Compact HRS IPD N77 bandpass filter based on tapered spiral inductors and innovative source-load coupling

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuhan Cao, Bukun Xu, Bo Yuan, Gaofeng Wang
{"title":"Compact HRS IPD N77 bandpass filter based on tapered spiral inductors and innovative source-load coupling","authors":"Yuhan Cao,&nbsp;Bukun Xu,&nbsp;Bo Yuan,&nbsp;Gaofeng Wang","doi":"10.1016/j.mejo.2025.106653","DOIUrl":null,"url":null,"abstract":"<div><div>A compact bandpass filter (BPF) has been developed and fabricated using high-resistivity silicon (HRS) integrated passive device (IPD) technology. The core component of the BPF is designed with a source-load coupling network, which facilitates the generation of transmission zeros on both sides of the passband. To improve high-frequency stopband rejection and ensure impedance matching between the source-load coupling network and the load, a cascaded lumped Pi-type network has been integrated into the design. The layout of the design employs high-Q tapered spiral inductors, which are utilized to minimize insertion loss. To evaluate the performance of the design, an on-chip filter operating within the 5G N77 band has been fabricated, achieving compact dimensions of 1 × 0.5 mm<sup>2</sup>. Measurement results indicate that the BPF attains an N77 in-band insertion loss of less than 1.7 dB and a 3-dB fractional bandwidth exceeding 61.3 %, along with an out-of-band rejection of 23.4 dB at the LTE band 3 uplink frequency.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"159 ","pages":"Article 106653"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187923912500102X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A compact bandpass filter (BPF) has been developed and fabricated using high-resistivity silicon (HRS) integrated passive device (IPD) technology. The core component of the BPF is designed with a source-load coupling network, which facilitates the generation of transmission zeros on both sides of the passband. To improve high-frequency stopband rejection and ensure impedance matching between the source-load coupling network and the load, a cascaded lumped Pi-type network has been integrated into the design. The layout of the design employs high-Q tapered spiral inductors, which are utilized to minimize insertion loss. To evaluate the performance of the design, an on-chip filter operating within the 5G N77 band has been fabricated, achieving compact dimensions of 1 × 0.5 mm2. Measurement results indicate that the BPF attains an N77 in-band insertion loss of less than 1.7 dB and a 3-dB fractional bandwidth exceeding 61.3 %, along with an out-of-band rejection of 23.4 dB at the LTE band 3 uplink frequency.
紧凑型HRS IPD N77带通滤波器基于锥形螺旋电感和创新的源负载耦合
采用高阻硅(HRS)集成无源器件(IPD)技术研制了一种紧凑型带通滤波器(BPF)。BPF的核心组件采用源负载耦合网络设计,便于在通带两侧产生传输零点。为了提高高频阻带抑制能力,确保源负载耦合网络与负载之间的阻抗匹配,在设计中集成了级联的集总pi型网络。设计的布局采用高q锥形螺旋电感,利用它来最小化插入损耗。为了评估该设计的性能,已经制造了一个在5G N77频段内工作的片上滤波器,实现了1 × 0.5 mm2的紧凑尺寸。测量结果表明,BPF在LTE波段3上行频率下的N77带内插入损耗小于1.7 dB, 3db分数带宽超过61.3%,带外抑制为23.4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信