Effect of spacing ratio on FIV response of multiple cylindrical oscillators supported by maglev

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Xu Bai , Wen Zhang , Jialu Wang , Zhenbang Yang
{"title":"Effect of spacing ratio on FIV response of multiple cylindrical oscillators supported by maglev","authors":"Xu Bai ,&nbsp;Wen Zhang ,&nbsp;Jialu Wang ,&nbsp;Zhenbang Yang","doi":"10.1016/j.renene.2025.122918","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing flow-induced vibrations for low-velocity ocean current energy generation is effective. Replacing metal springs with magnetic levitation systems to support the oscillators offers advantages such as easy stiffness adjustment and better underwater maintenance. This makes it significant for flow-induced ocean current energy harvesting. A multi-oscillator design can further enhance energy output capacity, but the mutual interference between oscillators results in vibration responses that differ significantly from those of a single oscillator. This paper employs the RANS method and equivalent magnetic charge methods to develop a coupled model of FIV of rigid cylindrical oscillators supported by magnetic levitation. Numerical simulations analyze the effect of spacing ratio on oscillation amplitude ratio, vibration frequency, and vortex shedding patterns. The results show that in double tandem cylindrical oscillators with identical diameters supported by magnetic levitation, the spacing ratio significantly affects the vibration response of the upstream and downstream oscillators. Under the characteristics of the magnetic spring, the interference between upstream and downstream oscillators is stronger with a small spacing ratio, leading to peak amplitude ratios even at moderate to low flow velocities. When <em>G</em>/<em>D</em> = 2 and <em>U</em> = 0.5 m/s, the downstream oscillator reaches a maximum amplitude ratio of <em>A</em>* = 1.06, 2.26 times that of a single oscillator at the same flow velocity. In three tandem cylindrical oscillators with identical diameters supported by magnetic levitation, the vibration response fluctuates more than in the two-oscillator case, exhibiting distinct three-stage branching characteristics. With <em>G</em><sub>1</sub>/<em>D</em> = 2 fixed, when <em>G</em><sub>2</sub>/<em>D</em> = 2 and <em>U</em> = 0.6 m/s, the downstream oscillator reaches a maximum amplitude ratio of <em>A</em>* = 1.2, 2.45 times that of a single oscillator at the same flow velocity. Vortex analysis indicates that under appropriate spacing ratios and flow conditions, the interference among multiple oscillators is amplified, enabling the downstream oscillators to better absorb and utilize the coherent vortices from the upstream oscillators, thus optimizing the vibration response.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122918"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005804","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing flow-induced vibrations for low-velocity ocean current energy generation is effective. Replacing metal springs with magnetic levitation systems to support the oscillators offers advantages such as easy stiffness adjustment and better underwater maintenance. This makes it significant for flow-induced ocean current energy harvesting. A multi-oscillator design can further enhance energy output capacity, but the mutual interference between oscillators results in vibration responses that differ significantly from those of a single oscillator. This paper employs the RANS method and equivalent magnetic charge methods to develop a coupled model of FIV of rigid cylindrical oscillators supported by magnetic levitation. Numerical simulations analyze the effect of spacing ratio on oscillation amplitude ratio, vibration frequency, and vortex shedding patterns. The results show that in double tandem cylindrical oscillators with identical diameters supported by magnetic levitation, the spacing ratio significantly affects the vibration response of the upstream and downstream oscillators. Under the characteristics of the magnetic spring, the interference between upstream and downstream oscillators is stronger with a small spacing ratio, leading to peak amplitude ratios even at moderate to low flow velocities. When G/D = 2 and U = 0.5 m/s, the downstream oscillator reaches a maximum amplitude ratio of A* = 1.06, 2.26 times that of a single oscillator at the same flow velocity. In three tandem cylindrical oscillators with identical diameters supported by magnetic levitation, the vibration response fluctuates more than in the two-oscillator case, exhibiting distinct three-stage branching characteristics. With G1/D = 2 fixed, when G2/D = 2 and U = 0.6 m/s, the downstream oscillator reaches a maximum amplitude ratio of A* = 1.2, 2.45 times that of a single oscillator at the same flow velocity. Vortex analysis indicates that under appropriate spacing ratios and flow conditions, the interference among multiple oscillators is amplified, enabling the downstream oscillators to better absorb and utilize the coherent vortices from the upstream oscillators, thus optimizing the vibration response.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信