Experimental study of a single-phase immersion cooling system with natural and forced convection

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
A.S.M. Rokonuzzaman , Kasim Erdem , Bayram Şahin , Mehmed Rafet Özdemir
{"title":"Experimental study of a single-phase immersion cooling system with natural and forced convection","authors":"A.S.M. Rokonuzzaman ,&nbsp;Kasim Erdem ,&nbsp;Bayram Şahin ,&nbsp;Mehmed Rafet Özdemir","doi":"10.1016/j.ijthermalsci.2025.109868","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of the electronics industry has led to the emergence of miniaturized, high-speed devices with significant amount of volumetric heat generation. Immersion cooling systems offer an effective solution for managing high heat loads, particularly in data centers and battery thermal management systems. However, several fundamental issues of the underlying physical phenomena still need to be addressed to improve the efficiency of these systems. In this study, an immersion cooling system using Novec 7100 dielectric liquid has been experimentally investigated having four electric cartridge heaters with circular and square cross-sections. The effect of distance between heaters on the surface temperature was analyzed under different flow conditions. Furthermore, the effect of heater cross-section on the heat transfer coefficient was examined. For natural convection, the heat transfer coefficient increased as the distance between the heaters was increased for both heaters. As expected, the forced convection mechanism was found to be significantly more effective in heat removal compared to natural convection. At high heat flux values, the heat transfer coefficient was found to be higher for square heaters due to their 1.15 times larger surface area. However, for low heat flux values, the heat transfer coefficient was higher for circular heaters than the square heaters. These findings provide valuable insights into the optimization of immersion cooling systems, highlighting the influence of heater geometry and heater spacing on thermal management efficiency.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109868"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001917","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of the electronics industry has led to the emergence of miniaturized, high-speed devices with significant amount of volumetric heat generation. Immersion cooling systems offer an effective solution for managing high heat loads, particularly in data centers and battery thermal management systems. However, several fundamental issues of the underlying physical phenomena still need to be addressed to improve the efficiency of these systems. In this study, an immersion cooling system using Novec 7100 dielectric liquid has been experimentally investigated having four electric cartridge heaters with circular and square cross-sections. The effect of distance between heaters on the surface temperature was analyzed under different flow conditions. Furthermore, the effect of heater cross-section on the heat transfer coefficient was examined. For natural convection, the heat transfer coefficient increased as the distance between the heaters was increased for both heaters. As expected, the forced convection mechanism was found to be significantly more effective in heat removal compared to natural convection. At high heat flux values, the heat transfer coefficient was found to be higher for square heaters due to their 1.15 times larger surface area. However, for low heat flux values, the heat transfer coefficient was higher for circular heaters than the square heaters. These findings provide valuable insights into the optimization of immersion cooling systems, highlighting the influence of heater geometry and heater spacing on thermal management efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信