{"title":"Balance regulation of heat transfer and flow performances of convective heat exchange of microchannel array structures","authors":"Chaomeng Chen, Jie Wang, Liyang Wang, Ping Zhang","doi":"10.1016/j.ijthermalsci.2025.109882","DOIUrl":null,"url":null,"abstract":"<div><div>As chip integration density increases, the demand for efficient thermal management becomes critical. Traditional microchannel structures often face a trade-off between heat transfer enhancement and increased flow resistance. To address this issue, this study proposes a novel reverse optimization strategy for microchannel array structures, inspired by the natural configurations of leaf veins and spider webs. The optimization process involves two key stages: first, minimizing the maximum thermal resistance of individual microchannel units; second, reducing overall flow resistance through an inverse design approach. The optimized structure is experimentally validated against randomly designed comparative structures. The results demonstrate that the optimized structure achieves a comprehensive performance improvement ranging from 1.54 to 4.47 times over comparative structures. Furthermore, within the scope of this study, the optimized configuration reduces the pressure drop by 23 %–81 % while maintaining high heat transfer efficiency. This research contributes to the development of optimized microchannel array designs for active thermal management systems.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109882"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002054","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As chip integration density increases, the demand for efficient thermal management becomes critical. Traditional microchannel structures often face a trade-off between heat transfer enhancement and increased flow resistance. To address this issue, this study proposes a novel reverse optimization strategy for microchannel array structures, inspired by the natural configurations of leaf veins and spider webs. The optimization process involves two key stages: first, minimizing the maximum thermal resistance of individual microchannel units; second, reducing overall flow resistance through an inverse design approach. The optimized structure is experimentally validated against randomly designed comparative structures. The results demonstrate that the optimized structure achieves a comprehensive performance improvement ranging from 1.54 to 4.47 times over comparative structures. Furthermore, within the scope of this study, the optimized configuration reduces the pressure drop by 23 %–81 % while maintaining high heat transfer efficiency. This research contributes to the development of optimized microchannel array designs for active thermal management systems.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.