Ultra-wear-resistant high-entropy nanocomposite through gradient nanograined glaze-layer at 1000 °C

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yushan Geng , Jianbao Zhang , Hang Wang , Jiao Chen , Hao Gong , Dongsheng Yang , Jun Cheng , Yong Yang , Jun Yang , Weimin Liu
{"title":"Ultra-wear-resistant high-entropy nanocomposite through gradient nanograined glaze-layer at 1000 °C","authors":"Yushan Geng ,&nbsp;Jianbao Zhang ,&nbsp;Hang Wang ,&nbsp;Jiao Chen ,&nbsp;Hao Gong ,&nbsp;Dongsheng Yang ,&nbsp;Jun Cheng ,&nbsp;Yong Yang ,&nbsp;Jun Yang ,&nbsp;Weimin Liu","doi":"10.1016/j.compositesb.2025.112419","DOIUrl":null,"url":null,"abstract":"<div><div>The development of ultra-wear-resistant metallic materials capable of withstanding extreme temperatures remains a critical challenge in advancing tribological systems for aerospace, energy, and manufacturing industries. Here, we introduce a Co<sub>25</sub>Ni<sub>23</sub>Cr<sub>20</sub>Fe<sub>20</sub>Ti<sub>6</sub>Al<sub>4</sub>B<sub>2</sub> crystal-glass high-entropy nanocomposite, engineered with a high density of hierarchical nanoprecipitates. At 1000 °C, this material demonstrates an unprecedented negative wear rate of −2.3 × 10<sup>−6</sup> mm<sup>3</sup>/Nm, surpassing state-of-the-art superalloys and intermetallic composites, while maintaining a low coefficient of friction of 0.26, comparable to advanced ceramic lubricants. This exceptional performance stems from a gradient nanograined glaze layer that dissipates frictional strain and suppresses brittle cracking and spalling of metallic oxides in the tribo-layer. Our findings expand the design space for high-entropy alloys and establish a scalable framework for developing next-generation ultra-durable materials for extreme environments.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112419"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of ultra-wear-resistant metallic materials capable of withstanding extreme temperatures remains a critical challenge in advancing tribological systems for aerospace, energy, and manufacturing industries. Here, we introduce a Co25Ni23Cr20Fe20Ti6Al4B2 crystal-glass high-entropy nanocomposite, engineered with a high density of hierarchical nanoprecipitates. At 1000 °C, this material demonstrates an unprecedented negative wear rate of −2.3 × 10−6 mm3/Nm, surpassing state-of-the-art superalloys and intermetallic composites, while maintaining a low coefficient of friction of 0.26, comparable to advanced ceramic lubricants. This exceptional performance stems from a gradient nanograined glaze layer that dissipates frictional strain and suppresses brittle cracking and spalling of metallic oxides in the tribo-layer. Our findings expand the design space for high-entropy alloys and establish a scalable framework for developing next-generation ultra-durable materials for extreme environments.
1000 °C 下通过梯度纳米粒状釉层获得超耐磨高熵纳米复合材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信