Direct growth of hierarchical nickel tin cobalt sulfide thin film on Ni foam as a high-performance electrode for hybrid supercapacitor

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Ayat A. Ibrahim , Ahmed A. Bahrawy , M.M. El-Rabiei , Hemdan S.H. Mohamed , Gomaa Khabiri
{"title":"Direct growth of hierarchical nickel tin cobalt sulfide thin film on Ni foam as a high-performance electrode for hybrid supercapacitor","authors":"Ayat A. Ibrahim ,&nbsp;Ahmed A. Bahrawy ,&nbsp;M.M. El-Rabiei ,&nbsp;Hemdan S.H. Mohamed ,&nbsp;Gomaa Khabiri","doi":"10.1016/j.compositesb.2025.112420","DOIUrl":null,"url":null,"abstract":"<div><div>This study unveils an innovative approach for fabricating high-performance Nickel–Tin–Cobalt sulfide (NTCS) on Ni foam (NF) substrates as a ternary sulfide, shifting the boundaries of supercapacitors (SCs) technology towards economic efficiency. The successive ionic layer adsorption and reaction (SILAR) technique is used to prepare a range of NTCS thin films, as battery like electrode, and the optimized NTCS3@NF electrode displayed exceptional results, overtaking all previously reported ternary sulfides. The NTCS3@NF electrode achieved an impressive specific capacity (Cs) of 1708 C/g at 5 A/g, with 100 % capacity retention and coulombic efficiency after 20,000 cycles. The superior performance of the introduced electrodes is attributed to the effective direct growth of thin film over an excellent conductive substrate and avoiding creating dead surface area by using polymer binders. The inherent connection between the prepared thin film and substrate decreases the overall resistance and facilitates electron transfer across the interface. Also, the thin film porosity helps in effective ion diffusion between the electrode/electrolyte interface. Moreover, the NTCS3@NF//Activated Carbon (AC)@NF hybrid supercapacitor device (HSC) delivered an outstanding energy density (ED) of 20 Wh/kg and a power density (PD) of 12,909 W/kg at 10 A/g, retaining 76 % capacity and 81.2 % coulombic efficiency even after 100,000 cycles, surpassing the performance of leading HSCs. These findings position NTCS as a potential material for next-generation supercapacitors and economical energy storage applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112420"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135983682500321X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study unveils an innovative approach for fabricating high-performance Nickel–Tin–Cobalt sulfide (NTCS) on Ni foam (NF) substrates as a ternary sulfide, shifting the boundaries of supercapacitors (SCs) technology towards economic efficiency. The successive ionic layer adsorption and reaction (SILAR) technique is used to prepare a range of NTCS thin films, as battery like electrode, and the optimized NTCS3@NF electrode displayed exceptional results, overtaking all previously reported ternary sulfides. The NTCS3@NF electrode achieved an impressive specific capacity (Cs) of 1708 C/g at 5 A/g, with 100 % capacity retention and coulombic efficiency after 20,000 cycles. The superior performance of the introduced electrodes is attributed to the effective direct growth of thin film over an excellent conductive substrate and avoiding creating dead surface area by using polymer binders. The inherent connection between the prepared thin film and substrate decreases the overall resistance and facilitates electron transfer across the interface. Also, the thin film porosity helps in effective ion diffusion between the electrode/electrolyte interface. Moreover, the NTCS3@NF//Activated Carbon (AC)@NF hybrid supercapacitor device (HSC) delivered an outstanding energy density (ED) of 20 Wh/kg and a power density (PD) of 12,909 W/kg at 10 A/g, retaining 76 % capacity and 81.2 % coulombic efficiency even after 100,000 cycles, surpassing the performance of leading HSCs. These findings position NTCS as a potential material for next-generation supercapacitors and economical energy storage applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信