{"title":"Hydration pathways of CaCl2 inside matrices with different pore sizes","authors":"Michaela C. Eberbach , A.I. Shkatulov , H.P. Huinink , H.R. Fischer , O.C.G. Adan","doi":"10.1016/j.micromeso.2025.113605","DOIUrl":null,"url":null,"abstract":"<div><div>For use as a heat storage material, CaCl<sub>2</sub> is often impregnated into porous materials. This is done to stabilize the salt against conglomeration and its dissolution due to the low deliquescence relative humidity. However, CaCl<sub>2</sub> has overlapping temperature and water vapor pressure conditions for its trito- and monohydrate, which are kinetically hindered against each other creating path-dependent (de-)hydration steps. These pathways may change under the influence of confinement. These changes can influence the temperature output for heat batteries using CaCl<sub>2</sub> composites and could make the taken pathways for hydration and dehydration either more complex or simpler than the pure salt. So, in this research, the hydration and dehydration steps of CaCl<sub>2</sub> inside different clays (Vermiculite, Halloysite, and Sepiolite) and silica gels were investigated with respect to their transformations compared to the bulk salt. Therefore, the kinetic phase transition onsets were determined with isobaric TGA measurements together with PXRD in situ experiments to confirm or identify the crystalline phases. This showed that inside pores, CaCl<sub>2</sub> forms the monohydrate rather than the tritohydrate. The decrease of pore diameter leads to easier formation of monohydrate over tritohydrate. This trend can be explained by the crystal structures of the hydrates and their unit cell volumes considering that larger crystals are difficult to form in the limited space inside the pore systems. This change in phase transition steps influences the transition temperatures, which affects its application for heat storage.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"391 ","pages":"Article 113605"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001192","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For use as a heat storage material, CaCl2 is often impregnated into porous materials. This is done to stabilize the salt against conglomeration and its dissolution due to the low deliquescence relative humidity. However, CaCl2 has overlapping temperature and water vapor pressure conditions for its trito- and monohydrate, which are kinetically hindered against each other creating path-dependent (de-)hydration steps. These pathways may change under the influence of confinement. These changes can influence the temperature output for heat batteries using CaCl2 composites and could make the taken pathways for hydration and dehydration either more complex or simpler than the pure salt. So, in this research, the hydration and dehydration steps of CaCl2 inside different clays (Vermiculite, Halloysite, and Sepiolite) and silica gels were investigated with respect to their transformations compared to the bulk salt. Therefore, the kinetic phase transition onsets were determined with isobaric TGA measurements together with PXRD in situ experiments to confirm or identify the crystalline phases. This showed that inside pores, CaCl2 forms the monohydrate rather than the tritohydrate. The decrease of pore diameter leads to easier formation of monohydrate over tritohydrate. This trend can be explained by the crystal structures of the hydrates and their unit cell volumes considering that larger crystals are difficult to form in the limited space inside the pore systems. This change in phase transition steps influences the transition temperatures, which affects its application for heat storage.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.