{"title":"Novel design of phase-frequency detector using a new flip-flop with reset capability in QCA technology","authors":"Pezhman Kiani Vosta","doi":"10.1016/j.nancom.2025.100571","DOIUrl":null,"url":null,"abstract":"<div><div>QCA (Quantum-dot Cellular Automata) technology is considered as an innovative method in the design of electronic circuits due to its ability to perform fast processing calculations. In this article, for the first time, some new designs of digital circuits were designed and simulated in the best case with a new and practical technique. This article uses a unique technique to design a <span>d</span>-flip-flop with reset capability with 33 cells, an area of <span><math><mrow><mn>0.02</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> and a delay of 0.75 clock cycles, a PFD (Phase-Frequency Detector) of the first type with 88 cells, an area of <span><math><mrow><mn>0.07</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> and a delay of one clock cycle, and a second type of PFD with 119 cells, an area of <span><math><mrow><mn>0.09</mn><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> and has designed a delay of 1.75 clock cycles. Also, the number of cells and the occupied area of the proposed designs have improved by 33.74 % and 59 %, respectively, compared to different authorities. Therefore, the proposed designs are considered among the best designs among different authorities.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"44 ","pages":"Article 100571"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778925000092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
QCA (Quantum-dot Cellular Automata) technology is considered as an innovative method in the design of electronic circuits due to its ability to perform fast processing calculations. In this article, for the first time, some new designs of digital circuits were designed and simulated in the best case with a new and practical technique. This article uses a unique technique to design a d-flip-flop with reset capability with 33 cells, an area of and a delay of 0.75 clock cycles, a PFD (Phase-Frequency Detector) of the first type with 88 cells, an area of and a delay of one clock cycle, and a second type of PFD with 119 cells, an area of and has designed a delay of 1.75 clock cycles. Also, the number of cells and the occupied area of the proposed designs have improved by 33.74 % and 59 %, respectively, compared to different authorities. Therefore, the proposed designs are considered among the best designs among different authorities.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.