Aberrant information flow within resting-state triple network model in schizophrenia-An EEG effective connectivity study

IF 2.1 4区 医学 Q3 CLINICAL NEUROLOGY
Przemysław Adamczyk , Wiktor Więcławski , Maja Wojcik , Sandra Frycz , Bartłomiej Panek , Martin Jáni , Miroslaw Wyczesany
{"title":"Aberrant information flow within resting-state triple network model in schizophrenia-An EEG effective connectivity study","authors":"Przemysław Adamczyk ,&nbsp;Wiktor Więcławski ,&nbsp;Maja Wojcik ,&nbsp;Sandra Frycz ,&nbsp;Bartłomiej Panek ,&nbsp;Martin Jáni ,&nbsp;Miroslaw Wyczesany","doi":"10.1016/j.pscychresns.2025.111985","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia is a psychiatric disorder with heterogeneous clinical manifestations and complex aetiology. Notably, the triple-network model proposes an interesting framework for investigating abnormal neurocircuit activity at rest in schizophrenia.</div><div>The present study on 30 chronic schizophrenia individuals and 30 controls aimed to explore the differences in EEG resting state effective connectivity within a triple-network model using source-localization-based Directed Transfer Function.</div><div>Our findings revealed multiband effective connectivity disturbances within default mode (DMN), central executive (CEN), and salience (SN) networks in schizophrenia. The most significant difference was manifested in a global DMN hyperconnectivity, accompanied by low-band hyperconnectivity and high-band hypoconnectivity in CEN, along with the aberrant information flows in SN.</div><div>In conclusion, our study presents novel insights into schizophrenia neuropathology, with a particular emphasis on the reversed directionality in information flows between hubs of SN, DMN, and CEN. This may be suggested as a promising biomarker of schizophrenia.</div></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"349 ","pages":"Article 111985"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092549272500040X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia is a psychiatric disorder with heterogeneous clinical manifestations and complex aetiology. Notably, the triple-network model proposes an interesting framework for investigating abnormal neurocircuit activity at rest in schizophrenia.
The present study on 30 chronic schizophrenia individuals and 30 controls aimed to explore the differences in EEG resting state effective connectivity within a triple-network model using source-localization-based Directed Transfer Function.
Our findings revealed multiband effective connectivity disturbances within default mode (DMN), central executive (CEN), and salience (SN) networks in schizophrenia. The most significant difference was manifested in a global DMN hyperconnectivity, accompanied by low-band hyperconnectivity and high-band hypoconnectivity in CEN, along with the aberrant information flows in SN.
In conclusion, our study presents novel insights into schizophrenia neuropathology, with a particular emphasis on the reversed directionality in information flows between hubs of SN, DMN, and CEN. This may be suggested as a promising biomarker of schizophrenia.
精神分裂症静息状态三重网络模型中的异常信息流——脑电有效连通性研究
精神分裂症是一种临床表现多样、病因复杂的精神疾病。值得注意的是,三重网络模型为研究精神分裂症患者休息时异常的神经回路活动提供了一个有趣的框架。本研究以30名慢性精神分裂症患者和30名对照组为研究对象,利用基于源定位的定向传递函数,探讨脑电静息状态有效连通性在三网络模型中的差异。我们的研究结果揭示了精神分裂症患者在默认模式(DMN)、中央执行(CEN)和显著性(SN)网络中的多波段有效连通性干扰。最显著的差异表现在DMN的整体超连通性,CEN出现低频段超连通性和高频段低连通性,SN出现异常信息流。总之,我们的研究为精神分裂症神经病理学提供了新的见解,特别强调了SN, DMN和CEN中心之间信息流的反向性。这可能被认为是一种有希望的精神分裂症生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychiatry Research: Neuroimaging
Psychiatry Research: Neuroimaging 医学-精神病学
CiteScore
3.80
自引率
0.00%
发文量
86
审稿时长
22.5 weeks
期刊介绍: The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信