{"title":"G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group","authors":"Leandro Cagliero , Gonzalo Gutierrez","doi":"10.1016/j.jalgebra.2025.02.040","DOIUrl":null,"url":null,"abstract":"<div><div>In the first part of the paper, we define the concept of a <em>G</em>-table of a <em>G</em>-(co)algebra and we compute the <em>G</em>-table of some <em>G</em>-(co)algebras (here, a <em>G</em>-algebra is an algebra on which <em>G</em> acts, semisimply, by algebra automorphisms). The <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span> is a set of scalars that provides precise and concise information about both the algebra structure and the <em>G</em>-module structure of <span><math><mi>A</mi></math></span>. In particular, the ordinary multiplication table of <span><math><mi>A</mi></math></span> can be derived from the <em>G</em>-table of <span><math><mi>A</mi></math></span>. Using the <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span>, we define an associated plain algebra <span><math><mi>P</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and present some basic functoriality results related to <em>P</em>.</div><div>Obtaining the <em>G</em>-table of a given <em>G</em>-algebra <span><math><mi>A</mi></math></span> requires significant work, but the result is a very powerful tool, as shown in the second part of the paper. Here, we compute the <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables of the Poisson algebra structure of the even-degree part of the cohomology associated to the cotangent bundle of the 3-dimensional Heisenberg Lie group with Lie algebra <span><math><mi>h</mi></math></span>, that is <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>,</mo><msup><mrow><mo>⋀</mo></mrow><mrow><mo>•</mo></mrow></msup><mi>h</mi><mo>)</mo></math></span>. This Poisson <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-algebra has dimension 18. From these <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables we deduce that the underlying Lie algebra of <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> is isomorphic to <span><math><mrow><mi>gl</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo><mo>⋉</mo><mrow><mi>gl</mi></mrow><msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> with the first factor acting on the second (abelian) factor by the adjoint representation. It is notable that the Lie algebra structure on <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> contains a semisimple Lie subalgebra (in this case <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>), that is strictly larger than the Levi factor of <span><math><mtext>Der</mtext><mo>(</mo><mi>h</mi><mo>)</mo></math></span>, which in this case is <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo><mo>⊂</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. This implies that the Levi factor of the Lie algebra <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> has nontrivial elements outside <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. Finally, this leads us to identify a family of commutative Poisson algebras whose underlying Lie structure are <span><math><mrow><mi>gl</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>K</mi><mo>)</mo><mo>⋉</mo><mrow><mi>gl</mi></mrow><msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>K</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> for arbitrary <em>n</em>. In the special case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, it is isomorphic to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 205-234"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001231","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the first part of the paper, we define the concept of a G-table of a G-(co)algebra and we compute the G-table of some G-(co)algebras (here, a G-algebra is an algebra on which G acts, semisimply, by algebra automorphisms). The G-table of a G-algebra is a set of scalars that provides precise and concise information about both the algebra structure and the G-module structure of . In particular, the ordinary multiplication table of can be derived from the G-table of . Using the G-table of a G-algebra , we define an associated plain algebra and present some basic functoriality results related to P.
Obtaining the G-table of a given G-algebra requires significant work, but the result is a very powerful tool, as shown in the second part of the paper. Here, we compute the -tables of the Poisson algebra structure of the even-degree part of the cohomology associated to the cotangent bundle of the 3-dimensional Heisenberg Lie group with Lie algebra , that is . This Poisson -algebra has dimension 18. From these -tables we deduce that the underlying Lie algebra of is isomorphic to with the first factor acting on the second (abelian) factor by the adjoint representation. It is notable that the Lie algebra structure on contains a semisimple Lie subalgebra (in this case ), that is strictly larger than the Levi factor of , which in this case is . This implies that the Levi factor of the Lie algebra has nontrivial elements outside . Finally, this leads us to identify a family of commutative Poisson algebras whose underlying Lie structure are for arbitrary n. In the special case , it is isomorphic to .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.