G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group

IF 0.8 2区 数学 Q2 MATHEMATICS
Leandro Cagliero , Gonzalo Gutierrez
{"title":"G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group","authors":"Leandro Cagliero ,&nbsp;Gonzalo Gutierrez","doi":"10.1016/j.jalgebra.2025.02.040","DOIUrl":null,"url":null,"abstract":"<div><div>In the first part of the paper, we define the concept of a <em>G</em>-table of a <em>G</em>-(co)algebra and we compute the <em>G</em>-table of some <em>G</em>-(co)algebras (here, a <em>G</em>-algebra is an algebra on which <em>G</em> acts, semisimply, by algebra automorphisms). The <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span> is a set of scalars that provides precise and concise information about both the algebra structure and the <em>G</em>-module structure of <span><math><mi>A</mi></math></span>. In particular, the ordinary multiplication table of <span><math><mi>A</mi></math></span> can be derived from the <em>G</em>-table of <span><math><mi>A</mi></math></span>. Using the <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span>, we define an associated plain algebra <span><math><mi>P</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and present some basic functoriality results related to <em>P</em>.</div><div>Obtaining the <em>G</em>-table of a given <em>G</em>-algebra <span><math><mi>A</mi></math></span> requires significant work, but the result is a very powerful tool, as shown in the second part of the paper. Here, we compute the <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables of the Poisson algebra structure of the even-degree part of the cohomology associated to the cotangent bundle of the 3-dimensional Heisenberg Lie group with Lie algebra <span><math><mi>h</mi></math></span>, that is <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>,</mo><msup><mrow><mo>⋀</mo></mrow><mrow><mo>•</mo></mrow></msup><mi>h</mi><mo>)</mo></math></span>. This Poisson <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-algebra has dimension 18. From these <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables we deduce that the underlying Lie algebra of <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> is isomorphic to <span><math><mrow><mi>gl</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo><mo>⋉</mo><mrow><mi>gl</mi></mrow><msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> with the first factor acting on the second (abelian) factor by the adjoint representation. It is notable that the Lie algebra structure on <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> contains a semisimple Lie subalgebra (in this case <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>), that is strictly larger than the Levi factor of <span><math><mtext>Der</mtext><mo>(</mo><mi>h</mi><mo>)</mo></math></span>, which in this case is <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo><mo>⊂</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. This implies that the Levi factor of the Lie algebra <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> has nontrivial elements outside <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>. Finally, this leads us to identify a family of commutative Poisson algebras whose underlying Lie structure are <span><math><mrow><mi>gl</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>K</mi><mo>)</mo><mo>⋉</mo><mrow><mi>gl</mi></mrow><msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>K</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> for arbitrary <em>n</em>. In the special case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, it is isomorphic to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 205-234"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001231","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the first part of the paper, we define the concept of a G-table of a G-(co)algebra and we compute the G-table of some G-(co)algebras (here, a G-algebra is an algebra on which G acts, semisimply, by algebra automorphisms). The G-table of a G-algebra A is a set of scalars that provides precise and concise information about both the algebra structure and the G-module structure of A. In particular, the ordinary multiplication table of A can be derived from the G-table of A. Using the G-table of a G-algebra A, we define an associated plain algebra P(A) and present some basic functoriality results related to P.
Obtaining the G-table of a given G-algebra A requires significant work, but the result is a very powerful tool, as shown in the second part of the paper. Here, we compute the SL(2,K)-tables of the Poisson algebra structure of the even-degree part of the cohomology associated to the cotangent bundle of the 3-dimensional Heisenberg Lie group with Lie algebra h, that is HE,(h)=HE(h,h). This Poisson SL(2,K)-algebra has dimension 18. From these SL(2,K)-tables we deduce that the underlying Lie algebra of HE,(h) is isomorphic to gl(3,K)gl(3,K)ab with the first factor acting on the second (abelian) factor by the adjoint representation. It is notable that the Lie algebra structure on HE,(h) contains a semisimple Lie subalgebra (in this case sl(3,K)), that is strictly larger than the Levi factor of Der(h), which in this case is sl(2,K)H1(h,h). This implies that the Levi factor of the Lie algebra HE,(h) has nontrivial elements outside H1(h,h). Finally, this leads us to identify a family of commutative Poisson algebras whose underlying Lie structure are gl(n,K)gl(n,K)ab for arbitrary n. In the special case n=3, it is isomorphic to HE,(h).
海森堡李群的余切束偶上同调的g表和泊松结构
在本文的第一部分中,我们定义了G-(co)代数的G-表的概念,并计算了一些G-(co)代数的G-表(这里G-代数是G通过代数自同构半简单作用于其上的代数)。g -代数a的g表是一组标量,它提供了关于a的代数结构和g -模结构的精确而简洁的信息。特别是a的普通乘法表可以由a的g表导出。利用g -代数a的g表,我们定义了一个相关的普通代数P(a),并给出了与P相关的一些基本功能结果。但结果是一个非常强大的工具,如论文的第二部分所示。本文计算了具有李代数h的三维Heisenberg李群的余切束的上同调的偶次部分的泊松代数结构的SL(2,K)-表,即HE•,•(h)=HE•(h, * *•h)。这个泊松SL(2,k)代数的维数是18。从这些SL(2,K)-表中,我们推导出HE•,•(h)的底层李代数与gl(3,K) × gl(3,K) × l(3,K)ab同构,并且第一因子通过伴随表示作用于第二(阿贝尔)因子。值得注意的是,HE•,•(h)上的李代数结构包含一个半简单李子代数(在这种情况下为sl(3,K)),它严格大于Der(h)的Levi因子,在这种情况下为sl(2,K)∧H1(h,h)。这意味着李代数HE•,•(h)的Levi因子在H1(h,h)之外有非平凡元素。最后,我们得到了一类交换泊松代数,其基本李结构为任意n的gl(n,K) × gl(n,K)ab。在n=3的特殊情况下,它与HE•,•(h)同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信