Gradings, graded identities, ⁎-identities and graded ⁎-identities of an algebra of upper triangular matrices

IF 0.8 2区 数学 Q2 MATHEMATICS
Jonatan Andres Gomez Parada, Plamen Koshlukov
{"title":"Gradings, graded identities, ⁎-identities and graded ⁎-identities of an algebra of upper triangular matrices","authors":"Jonatan Andres Gomez Parada,&nbsp;Plamen Koshlukov","doi":"10.1016/j.jalgebra.2025.02.047","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> be the free associative algebra freely generated over the field <em>K</em> by the countable set <span><math><mi>X</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. If <em>A</em> is an associative <em>K</em>-algebra, we say that a polynomial <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> is a polynomial identity, or simply an identity in <em>A</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for every <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, …, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>A</mi></math></span>.</div><div>Consider <span><math><mi>A</mi></math></span> the subalgebra of <span><math><mi>U</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> given by:<span><span><span><math><mi>A</mi><mo>=</mo><mi>K</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>)</mo><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> denote the matrix units. We investigate the gradings on the algebra <span><math><mi>A</mi></math></span>, determined by an abelian group, and prove that these gradings are elementary. Furthermore, we compute a basis for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities of <span><math><mi>A</mi></math></span>, and also for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities with graded involution. Moreover, we describe the cocharacters of this algebra.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 171-204"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001309","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let KX be the free associative algebra freely generated over the field K by the countable set X={x1,x2,}. If A is an associative K-algebra, we say that a polynomial f(x1,,xn)KX is a polynomial identity, or simply an identity in A if f(a1,,an)=0 for every a1, …, anA.
Consider A the subalgebra of UT3(K) given by:A=K(e1,1+e3,3)Ke2,2Ke2,3Ke3,2Ke1,3, where ei,j denote the matrix units. We investigate the gradings on the algebra A, determined by an abelian group, and prove that these gradings are elementary. Furthermore, we compute a basis for the Z2-graded identities of A, and also for the Z2-graded identities with graded involution. Moreover, we describe the cocharacters of this algebra.
上三角矩阵代数的分级、分级恒等式、 -恒等式和分级 -恒等式
设K < X >为可数集合X={x1,x2,…}在域K上自由生成的自由结合代数。如果A是一个结合K代数,我们说多项式f(x1,…,xn)∈K < X >是一个多项式恒等式,或者简单地说,如果f(a1,…,an)对每个a1,…,an∈A =0,则是A中的一个恒等式。考虑UT3(K)的子代数A:A=K(e1,1+e3,3)⊕Ke2,2⊕Ke2,3⊕Ke3,2⊕Ke1,3,其中ei,j表示矩阵单位。我们研究了代数A上由一个阿贝尔群决定的等级,并证明了这些等级是初等的。进一步,我们计算了a的z2 -分级恒等式的一组基,以及具有分级对合的z2 -分级恒等式的一组基。此外,我们还描述了这个代数的协字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信