{"title":"Gradings, graded identities, ⁎-identities and graded ⁎-identities of an algebra of upper triangular matrices","authors":"Jonatan Andres Gomez Parada, Plamen Koshlukov","doi":"10.1016/j.jalgebra.2025.02.047","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> be the free associative algebra freely generated over the field <em>K</em> by the countable set <span><math><mi>X</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. If <em>A</em> is an associative <em>K</em>-algebra, we say that a polynomial <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> is a polynomial identity, or simply an identity in <em>A</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for every <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, …, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>A</mi></math></span>.</div><div>Consider <span><math><mi>A</mi></math></span> the subalgebra of <span><math><mi>U</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> given by:<span><span><span><math><mi>A</mi><mo>=</mo><mi>K</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>)</mo><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> denote the matrix units. We investigate the gradings on the algebra <span><math><mi>A</mi></math></span>, determined by an abelian group, and prove that these gradings are elementary. Furthermore, we compute a basis for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities of <span><math><mi>A</mi></math></span>, and also for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities with graded involution. Moreover, we describe the cocharacters of this algebra.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 171-204"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001309","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the free associative algebra freely generated over the field K by the countable set . If A is an associative K-algebra, we say that a polynomial is a polynomial identity, or simply an identity in A if for every , …, .
Consider the subalgebra of given by: where denote the matrix units. We investigate the gradings on the algebra , determined by an abelian group, and prove that these gradings are elementary. Furthermore, we compute a basis for the -graded identities of , and also for the -graded identities with graded involution. Moreover, we describe the cocharacters of this algebra.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.