Radicals in polynomial rings skewed by an endomorphism

IF 0.8 2区 数学 Q2 MATHEMATICS
Nam Kyun Kim , Pace P. Nielsen , Michał Ziembowski
{"title":"Radicals in polynomial rings skewed by an endomorphism","authors":"Nam Kyun Kim ,&nbsp;Pace P. Nielsen ,&nbsp;Michał Ziembowski","doi":"10.1016/j.jalgebra.2025.02.044","DOIUrl":null,"url":null,"abstract":"<div><div>Given a ring <em>R</em>, radicals of the polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, and even of the skew polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> skewed by an endomorphism <em>σ</em> on <em>R</em>, have been studied and described for many different radicals. Often, in those descriptions, the ring <em>R</em> was assumed to be unital, or the endomorphism <em>σ</em> was assumed to be an automorphism. Here we systematically study what happens when such assumptions are dropped, and generalize to even more radicals. Our results reveal three key properties that, when present, allow a simple description of a radical of <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span>. Moreover, multiple examples are provided showing that when <em>σ</em> is injective, but not surjective, wild growth patterns may occur.</div><div>We also answer an open question in the literature, by showing that the Levitzki radical of the skew Laurent polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> (when <em>σ</em> is an automorphism) is not naively describable in terms of the Levitzki radicals of <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> and <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 117-142"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001279","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a ring R, radicals of the polynomial ring R[x], and even of the skew polynomial ring R[x;σ] skewed by an endomorphism σ on R, have been studied and described for many different radicals. Often, in those descriptions, the ring R was assumed to be unital, or the endomorphism σ was assumed to be an automorphism. Here we systematically study what happens when such assumptions are dropped, and generalize to even more radicals. Our results reveal three key properties that, when present, allow a simple description of a radical of R[x;σ]. Moreover, multiple examples are provided showing that when σ is injective, but not surjective, wild growth patterns may occur.
We also answer an open question in the literature, by showing that the Levitzki radical of the skew Laurent polynomial ring R[x,x1;σ] (when σ is an automorphism) is not naively describable in terms of the Levitzki radicals of R[x;σ] and R[x;σ1].
由自同态偏斜的多项式环中的根
给定一个环R,研究并描述了多项式环R[x]的根,以及被R上的自同态σ所偏斜的偏多项式环R[x;σ]的根。通常,在这些描述中,环R被假设为幺正的,或者自同构σ被假设为自同构。在这里,我们系统地研究当这些假设被放弃时会发生什么,并推广到更多的自由基。我们的结果揭示了三个关键性质,当它们存在时,允许对R[x;σ]的根进行简单的描述。此外,还给出了多个例子,表明当σ是内射而不是满射时,可能出现野生长模式。我们也回答了文献中的一个开放性问题,证明了偏朗多项式环R[x,x−1;σ](当σ是自同构时)的Levitzki根不能用R[x;σ]和R[x;σ−1]的Levitzki根来天真地描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信