Tri Nguyen , Corey Magaldino , Jayci Landfair , Polemnia G. Amazeen , Mustafa Demir , Lixiao Huang , Nancy Cooke
{"title":"Navigating the complex dynamics of human-automation driving: A guide to the use of the dynamical systems analysis (DSA) toolbox","authors":"Tri Nguyen , Corey Magaldino , Jayci Landfair , Polemnia G. Amazeen , Mustafa Demir , Lixiao Huang , Nancy Cooke","doi":"10.1016/j.cogsys.2025.101347","DOIUrl":null,"url":null,"abstract":"<div><div>Driver-environment-automation systems exhibit a wide range of distinctive behavioral patterns that organically arise from complex interactions. To understand and quantify their emergence, we examined the nested underlying processes that contribute to observable behavior using three dynamical systems analyses: multifractal detrended fluctuation analysis (MFDFA), recurrence quantification analysis (RQA), and wavelet coherence analysis (WCT). As a technical demonstration of how to utilize multiple nonlinear analyses to probe multivariate data, we explain the appropriateness of each analysis for each stage of discovery, the information each provides, and the application of that information to driving. Results revealed that driving behaviors are influenced by both long-range (e.g., decision-making) and short-range (e.g., reaction time) processes whose relative contribution differs for the easier straight sections and more challenging S-curve sections of the track. The discussed methods provide information about (a) the timescale at which driving behaviors are being coordinated with environmental and automation considerations and (b) the time points where peak coordination is localized. This paper illustrates and empirically examines the utility of the Dynamical Systems Analysis (DSA) toolbox in understanding the behaviors of complex systems and highlights important considerations for researchers seeking to utilize this approach in their research.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"91 ","pages":"Article 101347"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000270","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Driver-environment-automation systems exhibit a wide range of distinctive behavioral patterns that organically arise from complex interactions. To understand and quantify their emergence, we examined the nested underlying processes that contribute to observable behavior using three dynamical systems analyses: multifractal detrended fluctuation analysis (MFDFA), recurrence quantification analysis (RQA), and wavelet coherence analysis (WCT). As a technical demonstration of how to utilize multiple nonlinear analyses to probe multivariate data, we explain the appropriateness of each analysis for each stage of discovery, the information each provides, and the application of that information to driving. Results revealed that driving behaviors are influenced by both long-range (e.g., decision-making) and short-range (e.g., reaction time) processes whose relative contribution differs for the easier straight sections and more challenging S-curve sections of the track. The discussed methods provide information about (a) the timescale at which driving behaviors are being coordinated with environmental and automation considerations and (b) the time points where peak coordination is localized. This paper illustrates and empirically examines the utility of the Dynamical Systems Analysis (DSA) toolbox in understanding the behaviors of complex systems and highlights important considerations for researchers seeking to utilize this approach in their research.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.