{"title":"Phase evolution and thermally enhanced Red-NIR upconversion luminescence in ZrO2:Yb3+/Tm3+","authors":"Rui Zhu, Tingting Li, Jiahui Ren, Mengzhen Jia, Puyan Hao, Mandong Zhai, Hongyan Gao, Xiaoqi Zhao","doi":"10.1016/j.optmat.2025.116967","DOIUrl":null,"url":null,"abstract":"<div><div>The near-infrared (NIR) luminescence of lanthanide ions shows important application potential in biological imaging owing to its good tissue penetration ability and less biological tissue photodamage in comparison to visible luminescence. However, at present, the luminescence intensity of lanthanide-doped NIR luminescent materials is generally low, which greatly restricts their development in bioimaging application. In this work, NIR-emitted ZrO<sub>2</sub>:Yb<sup>3+</sup>/Tm<sup>3+</sup> sample was synthesized by urea-assisted co-precipitation method. The crystal phase evolution process and luminescence properties of ZrO<sub>2</sub>:Yb<sup>3+</sup>/Tm<sup>3+</sup> sample were precisely controlled by lanthanide ions doping. A 2.3-fold enhancement of the upconversion emission was recorded for the ZrO<sub>2</sub>:Yb<sup>3+</sup>/Tm<sup>3+</sup> sample as the temperature was increased from 25 °C to 225 °C because of the phonon-assisted electron population processes at specific energy levels. Our research results may inspire new ideas for developing thermally enhanced lanthanide-doped upconversion materials with high emission intensities.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"162 ","pages":"Article 116967"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346725003271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The near-infrared (NIR) luminescence of lanthanide ions shows important application potential in biological imaging owing to its good tissue penetration ability and less biological tissue photodamage in comparison to visible luminescence. However, at present, the luminescence intensity of lanthanide-doped NIR luminescent materials is generally low, which greatly restricts their development in bioimaging application. In this work, NIR-emitted ZrO2:Yb3+/Tm3+ sample was synthesized by urea-assisted co-precipitation method. The crystal phase evolution process and luminescence properties of ZrO2:Yb3+/Tm3+ sample were precisely controlled by lanthanide ions doping. A 2.3-fold enhancement of the upconversion emission was recorded for the ZrO2:Yb3+/Tm3+ sample as the temperature was increased from 25 °C to 225 °C because of the phonon-assisted electron population processes at specific energy levels. Our research results may inspire new ideas for developing thermally enhanced lanthanide-doped upconversion materials with high emission intensities.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.