Reviewing the fundamentals and best practices to characterize microplastics using state–of–the-art quantum-cascade laser reflectance-absorbance spectroscopy
Adrián López-Rosales , Borja Ferreiro , Jose M. Andrade , Andreas Kerstan , Darren Robey , Soledad Muniategui
{"title":"Reviewing the fundamentals and best practices to characterize microplastics using state–of–the-art quantum-cascade laser reflectance-absorbance spectroscopy","authors":"Adrián López-Rosales , Borja Ferreiro , Jose M. Andrade , Andreas Kerstan , Darren Robey , Soledad Muniategui","doi":"10.1016/j.trac.2025.118229","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic pollution studies depend on reliable identification of the suspicious particles. Out of the various analytical techniques available to characterize them, infrared transflectance using a tuneable mid-IR quantum cascade laser is a high-throughput state-of-the-art imaging option, specifically Agilent's QCL-LDIR (Quantum Cascade Laser Direct Infrared imaging). Its conceptual grounds are reviewed, instrumental developments are discussed, along with a review of applications and best practices to overcome obstacles/difficulties in routine measurements, namely: the spectral range, the variation of some peak intensities with the particles size, processing speed, and avoiding the use of measurement aliquots. Objective procedures to avoid too many false positives when identifying spectra and to distinguish fibers and fragments are given. These practices open a path to QCL-LDIR measurement standardization and potential use for microplastics monitoring, as requested by many governmental bodies in charge of setting environmental protection rules.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"188 ","pages":"Article 118229"},"PeriodicalIF":11.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993625000974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic pollution studies depend on reliable identification of the suspicious particles. Out of the various analytical techniques available to characterize them, infrared transflectance using a tuneable mid-IR quantum cascade laser is a high-throughput state-of-the-art imaging option, specifically Agilent's QCL-LDIR (Quantum Cascade Laser Direct Infrared imaging). Its conceptual grounds are reviewed, instrumental developments are discussed, along with a review of applications and best practices to overcome obstacles/difficulties in routine measurements, namely: the spectral range, the variation of some peak intensities with the particles size, processing speed, and avoiding the use of measurement aliquots. Objective procedures to avoid too many false positives when identifying spectra and to distinguish fibers and fragments are given. These practices open a path to QCL-LDIR measurement standardization and potential use for microplastics monitoring, as requested by many governmental bodies in charge of setting environmental protection rules.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.