{"title":"Fluorescent nanozymes: Emerging versatile materials advancing analytical chemistry","authors":"Qiaoqiao Diao , Zheng Tang , Jinjin Liu, Xiangheng Niu","doi":"10.1016/j.trac.2025.118237","DOIUrl":null,"url":null,"abstract":"<div><div>Since the revelation of Fe<sub>3</sub>O<sub>4</sub> nanoparticles with enzyme-like characteristics, nanozymes present a promising alternative to traditional bio-enzymes due to their straightforward preparation, good robustness, and adjustable performance. In addition to enzyme-mimetic catalysis, these materials also tend to show optical, electrical, thermal, and magnetic properties. Integrating nanozyme catalysis with these properties into an entity can offer fascinating merits to biochemical sensing. Especially, fluorescent nanozymes, a class of materials combining enzyme-mimicking activity and fluorescence, have been drawing growing interest in the analytical chemistry community in the past five years. To highlight the achievements and progress made in this emerging area, here we, for the first time, present a comprehensive summary on fluorescent nanozymes and their roles in advancing analytical detection. First, a definition of fluorescent nanozymes is given, and their bifunctional features are discussed. Then, common strategies employed to develop different material types of fluorescent nanozymes are introduced. Emphatically, their unique contributions to biochemical analysis are clarified in detail, along with various applications in environmental monitoring, food safety analysis, and biomedical detection. Finally, substantial potential of fluorescent nanozymes in realizing advanced detection as well as existing challenges is spotlighted. Our review provides a comprehensive and up-to-date reference on fluorescent nanozymes, which will attract more attention and guide future efforts to further promote the promising field.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"188 ","pages":"Article 118237"},"PeriodicalIF":11.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993625001050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since the revelation of Fe3O4 nanoparticles with enzyme-like characteristics, nanozymes present a promising alternative to traditional bio-enzymes due to their straightforward preparation, good robustness, and adjustable performance. In addition to enzyme-mimetic catalysis, these materials also tend to show optical, electrical, thermal, and magnetic properties. Integrating nanozyme catalysis with these properties into an entity can offer fascinating merits to biochemical sensing. Especially, fluorescent nanozymes, a class of materials combining enzyme-mimicking activity and fluorescence, have been drawing growing interest in the analytical chemistry community in the past five years. To highlight the achievements and progress made in this emerging area, here we, for the first time, present a comprehensive summary on fluorescent nanozymes and their roles in advancing analytical detection. First, a definition of fluorescent nanozymes is given, and their bifunctional features are discussed. Then, common strategies employed to develop different material types of fluorescent nanozymes are introduced. Emphatically, their unique contributions to biochemical analysis are clarified in detail, along with various applications in environmental monitoring, food safety analysis, and biomedical detection. Finally, substantial potential of fluorescent nanozymes in realizing advanced detection as well as existing challenges is spotlighted. Our review provides a comprehensive and up-to-date reference on fluorescent nanozymes, which will attract more attention and guide future efforts to further promote the promising field.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.