Enhanced iodine capture via covalently integrated NH₂-UiO-66@ZA-COF hybrid structures

IF 5.5 Q1 ENGINEERING, CHEMICAL
Shaikha S. AlNeyadi
{"title":"Enhanced iodine capture via covalently integrated NH₂-UiO-66@ZA-COF hybrid structures","authors":"Shaikha S. AlNeyadi","doi":"10.1016/j.ceja.2025.100735","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear power remains a crucial energy source, yet the management of radioactive waste, particularly iodine isotopes, presents significant environmental and health concerns due to their volatility and long half-life. Developing advanced materials for effective iodine sequestration is vital for ensuring the safe disposal of nuclear waste. Metal-Organic Framework (MOF)@Covalent Organic Framework (COF) hybrid materials offer a promising strategy, combining the high porosity and stability of MOFs with the tunable functionality of COFs. In this study, we introduce NH₂-UiO-66@ZA-COF, a novel MOF@COF hybrid synthesized via the in-situ growth of a ZA-COF shell on an NH₂-UiO-66 core using a Schiff-based reaction. This covalently bonded core-shell structure enables fine-tuned interface properties that significantly enhance iodine adsorption capacity. Our results demonstrate that NH₂-UiO-66@ZA-COF exhibits an exceptional iodine vapor uptake of 5.63 g⋅g⁻¹, surpassing previously reported MOF-COF hybrids such as NH₂-UiO-66@Br-COFs (3.73 g⋅g⁻¹) and UiO-66-NH₂@TAPT-COF (0.24 g⋅g⁻¹). Moreover, NH₂-UiO-66@ZA-COF hybrids display outstanding reusability, retaining over 94% of their iodine adsorption capacity after five cycles. The material maintains its structural integrity under harsh environmental conditions, demonstrating long-term stability, scalability, and cost-effectiveness. This study contributes to the advancement of sustainable radioactive waste management technologies by offering an efficient and reusable material for iodine capture, reducing the environmental impact of nuclear waste storage while providing a scalable and cost-effective solution for industrial applications. These findings highlight the potential of NH₂-UiO-66@ZA-COF as a high-performance material for radioactive iodine sequestration, paving the way for more sustainable nuclear waste management solutions.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100735"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear power remains a crucial energy source, yet the management of radioactive waste, particularly iodine isotopes, presents significant environmental and health concerns due to their volatility and long half-life. Developing advanced materials for effective iodine sequestration is vital for ensuring the safe disposal of nuclear waste. Metal-Organic Framework (MOF)@Covalent Organic Framework (COF) hybrid materials offer a promising strategy, combining the high porosity and stability of MOFs with the tunable functionality of COFs. In this study, we introduce NH₂-UiO-66@ZA-COF, a novel MOF@COF hybrid synthesized via the in-situ growth of a ZA-COF shell on an NH₂-UiO-66 core using a Schiff-based reaction. This covalently bonded core-shell structure enables fine-tuned interface properties that significantly enhance iodine adsorption capacity. Our results demonstrate that NH₂-UiO-66@ZA-COF exhibits an exceptional iodine vapor uptake of 5.63 g⋅g⁻¹, surpassing previously reported MOF-COF hybrids such as NH₂-UiO-66@Br-COFs (3.73 g⋅g⁻¹) and UiO-66-NH₂@TAPT-COF (0.24 g⋅g⁻¹). Moreover, NH₂-UiO-66@ZA-COF hybrids display outstanding reusability, retaining over 94% of their iodine adsorption capacity after five cycles. The material maintains its structural integrity under harsh environmental conditions, demonstrating long-term stability, scalability, and cost-effectiveness. This study contributes to the advancement of sustainable radioactive waste management technologies by offering an efficient and reusable material for iodine capture, reducing the environmental impact of nuclear waste storage while providing a scalable and cost-effective solution for industrial applications. These findings highlight the potential of NH₂-UiO-66@ZA-COF as a high-performance material for radioactive iodine sequestration, paving the way for more sustainable nuclear waste management solutions.
通过共价整合的NH₂-UiO-66@ZA-COF杂化结构增强碘捕获
核电仍然是一个重要的能源来源,但放射性废物,特别是碘同位素的管理由于其波动性和长半衰期而引起重大的环境和健康问题。开发有效固碘的先进材料对于确保核废料的安全处置至关重要。金属-有机骨架(MOF)@共价有机骨架(COF)杂化材料将MOF的高孔隙率和稳定性与COFs的可调功能相结合,提供了一种很有前途的策略。在这项研究中,我们引入了一种新的MOF@COF杂化物NH₂-UiO-66@ZA-COF,它是通过在NH₂-UiO-66核上原位生长ZA-COF壳而合成的。这种共价键合的核壳结构使界面性能得以微调,显著提高了碘的吸附能力。我们的研究结果表明,NH₂-UiO-66@ZA-COF具有5.63 g⋅g⁻¹的碘蒸汽吸收率,超过了先前报道的MOF-COF混合物,如NH₂-UiO-66@Br-COFs (3.73 g⋅g⁻¹)和uu -66-NH₂+ tapt - cof (0.24 g⋅g⁻¹)。此外,NH₂-UiO-66@ZA-COF杂化物表现出出色的可重复使用性,在5次循环后仍能保持94%以上的碘吸附能力。该材料在恶劣的环境条件下保持其结构完整性,表现出长期的稳定性、可扩展性和成本效益。本研究通过提供一种高效和可重复使用的碘捕获材料,减少核废料储存对环境的影响,同时为工业应用提供可扩展和具有成本效益的解决方案,有助于推进可持续放射性废物管理技术。这些发现突出了NH₂-UiO-66@ZA-COF作为放射性碘隔离的高性能材料的潜力,为更可持续的核废料管理解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信