Ming-Shou Hsieh , Heng-Wei Liu , Fu-You Guo , Deng-Pan Song , Meng-Yuan Li , Tsu-Yi Chao , Iat-Hang Fong , Yu-Sheng Chang , Chi-Tai Yeh
{"title":"S-hydroxychloroquine prevents the antiphospholipid thrombogenic complexes for antiphospholipid syndrome treatment","authors":"Ming-Shou Hsieh , Heng-Wei Liu , Fu-You Guo , Deng-Pan Song , Meng-Yuan Li , Tsu-Yi Chao , Iat-Hang Fong , Yu-Sheng Chang , Chi-Tai Yeh","doi":"10.1016/j.biopha.2025.117968","DOIUrl":null,"url":null,"abstract":"<div><div>Clinically used in systemic lupus erythematosus (SLE), Hydroxychloroquine (HCQ) exerts antithrombotic effects by inhibiting anti-β2-glycoprotein I (anti-β2GPI) antibody binding to phospholipid bilayers. However, HCQ is a racemic mixture, with only one enantiomer offering therapeutic benefits, while the other may contribute to toxicity. The current study evaluated the thromboprophylactic efficacy of <em>R</em>-enantiomer Hydroxychloroquine (<em>R</em>-HCQ), <em>S</em>-enantiomer Hydroxychloroquine (<em>S</em>-HCQ), and racemic HCQ (Rac-HCQ), with a focus on their impact on APS-associated markers. Both <em>in vitro</em> and <em>in vivo</em> models were employed, with human umbilical vein endothelial cells (HUVECs) and mice immunized with human β2-glycoprotein I antibodies used to evaluate the formation of antiphospholipid thrombotic complexes and their modulation by HCQ enantiomers. <em>S</em>-HCQ significantly reduced β2GPI complex binding and restored the AnxA5 anticoagulant shield <em>in vitro</em>, demonstrating superior efficacy over <em>R</em>-HCQ in disrupting β2GPI/anti-β2GPI interactions and preventing endothelial dysfunction in APS models. Pretreatment of HUVECs with S-HCQ significantly attenuated the expression of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and C-C motif ligand 2) and endothelial activation markers (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin). <em>S</em>-HCQ alleviates endothelial dysfunction by reducing proinflammatory cytokines, endothelial activation markers, and NO production while downregulating iNOS expression, highlighting its potential to mitigate oxidative stress and thrombogenic activity in APS-related endothelial damage. <em>In vivo</em>, <em>S</em>-HCQ effectively reduced clot formation in the femoral veins of APS mouse models. Among the HCQ enantiomers tested, <em>S</em>-HCQ demonstrated superior efficacy in modulating inflammatory and angiogenic pathways, influencing the formation of antiphospholipid thrombotic complexes and mitigating thrombosis. These findings underscore the potential of <em>S</em>-HCQ as a therapeutic alternative for APS management.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 117968"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001623","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clinically used in systemic lupus erythematosus (SLE), Hydroxychloroquine (HCQ) exerts antithrombotic effects by inhibiting anti-β2-glycoprotein I (anti-β2GPI) antibody binding to phospholipid bilayers. However, HCQ is a racemic mixture, with only one enantiomer offering therapeutic benefits, while the other may contribute to toxicity. The current study evaluated the thromboprophylactic efficacy of R-enantiomer Hydroxychloroquine (R-HCQ), S-enantiomer Hydroxychloroquine (S-HCQ), and racemic HCQ (Rac-HCQ), with a focus on their impact on APS-associated markers. Both in vitro and in vivo models were employed, with human umbilical vein endothelial cells (HUVECs) and mice immunized with human β2-glycoprotein I antibodies used to evaluate the formation of antiphospholipid thrombotic complexes and their modulation by HCQ enantiomers. S-HCQ significantly reduced β2GPI complex binding and restored the AnxA5 anticoagulant shield in vitro, demonstrating superior efficacy over R-HCQ in disrupting β2GPI/anti-β2GPI interactions and preventing endothelial dysfunction in APS models. Pretreatment of HUVECs with S-HCQ significantly attenuated the expression of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and C-C motif ligand 2) and endothelial activation markers (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin). S-HCQ alleviates endothelial dysfunction by reducing proinflammatory cytokines, endothelial activation markers, and NO production while downregulating iNOS expression, highlighting its potential to mitigate oxidative stress and thrombogenic activity in APS-related endothelial damage. In vivo, S-HCQ effectively reduced clot formation in the femoral veins of APS mouse models. Among the HCQ enantiomers tested, S-HCQ demonstrated superior efficacy in modulating inflammatory and angiogenic pathways, influencing the formation of antiphospholipid thrombotic complexes and mitigating thrombosis. These findings underscore the potential of S-HCQ as a therapeutic alternative for APS management.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.