High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Saurabh Kaushik , Arkabrata Mishra , Roshan Ross , Sweta Srivastava , Cecil R. Ross , Gautam V. Soni
{"title":"High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease","authors":"Saurabh Kaushik ,&nbsp;Arkabrata Mishra ,&nbsp;Roshan Ross ,&nbsp;Sweta Srivastava ,&nbsp;Cecil R. Ross ,&nbsp;Gautam V. Soni","doi":"10.1016/j.biosx.2025.100616","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100616"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信