Sensitive and selective electrochemical biosensor based on Manganese(II) complex for simultaneous determination of adenine and guanine from clinical samples and DNA extract samples
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Sensitive and selective electrochemical biosensor based on Manganese(II) complex for simultaneous determination of adenine and guanine from clinical samples and DNA extract samples","authors":"Melaku Metto , Alemu Tesfaye , Minaleshewa Atlabachew , Abayneh Munshea , Atakilt Abebe","doi":"10.1016/j.biosx.2025.100603","DOIUrl":null,"url":null,"abstract":"<div><div>The purines guanine and adenine are essential building blocks for nucleic acids and influence numerous biochemical processes in organisms. Elevated levels of these compounds in the bloodstream can indicate conditions such as cancer and provide insights into cellular energy status, tissue degradation, and enzyme malfunctions in metabolic pathways.</div><div>This study focuses on developing a voltammetric sensor through the electropolymerization of a tetraresorcinatemanganate (II) complex on a glassy carbon electrode (poly(Mn(HR)<sub>4</sub>)/GCE), which was thoroughly characterized. The poly(Mn(HR)<sub>4</sub>)/GCE exhibited distinct, well-defined irreversible oxidative peaks for adenine and guanine. The peak currents displayed strong linearity with analyte concentrations within the 0.01–300 μM range, boasting a detection limit of 66.54 and 9.1 nm and a limit of quantifications of 221.80 and 30.23 nm, respectively. The sensor was successfully employed to detect adenine and guanine in urine, clinical blood serum, and DNA extract samples, with spike recovery rates in these samples reaching the range of 96–104 %. The interference recovery results showcased an error rate of less than 6 %, highlighting the method's superior lower detection limit and broader dynamic range compared to existing techniques. These findings underscore the potential practicality of the proposed approach for accurately determining adenine and guanine in diverse real samples with intricate matrices.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100603"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The purines guanine and adenine are essential building blocks for nucleic acids and influence numerous biochemical processes in organisms. Elevated levels of these compounds in the bloodstream can indicate conditions such as cancer and provide insights into cellular energy status, tissue degradation, and enzyme malfunctions in metabolic pathways.
This study focuses on developing a voltammetric sensor through the electropolymerization of a tetraresorcinatemanganate (II) complex on a glassy carbon electrode (poly(Mn(HR)4)/GCE), which was thoroughly characterized. The poly(Mn(HR)4)/GCE exhibited distinct, well-defined irreversible oxidative peaks for adenine and guanine. The peak currents displayed strong linearity with analyte concentrations within the 0.01–300 μM range, boasting a detection limit of 66.54 and 9.1 nm and a limit of quantifications of 221.80 and 30.23 nm, respectively. The sensor was successfully employed to detect adenine and guanine in urine, clinical blood serum, and DNA extract samples, with spike recovery rates in these samples reaching the range of 96–104 %. The interference recovery results showcased an error rate of less than 6 %, highlighting the method's superior lower detection limit and broader dynamic range compared to existing techniques. These findings underscore the potential practicality of the proposed approach for accurately determining adenine and guanine in diverse real samples with intricate matrices.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.