Integrating yield gap analysis to capture genotype by environment by management interactions for Australian broadacre sorghum cropping systems

IF 5.6 1区 农林科学 Q1 AGRONOMY
Ismail I. Garba , Javier A. Fernandez , Qiaomin Chen , Carla Gho , Peter deVoil , Mark Cooper , Scott C. Chapman
{"title":"Integrating yield gap analysis to capture genotype by environment by management interactions for Australian broadacre sorghum cropping systems","authors":"Ismail I. Garba ,&nbsp;Javier A. Fernandez ,&nbsp;Qiaomin Chen ,&nbsp;Carla Gho ,&nbsp;Peter deVoil ,&nbsp;Mark Cooper ,&nbsp;Scott C. Chapman","doi":"10.1016/j.fcr.2025.109858","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Australia contributes ∼ 3 % of the global grain sorghum production despite relatively large gaps between water-limited potential (PYw) and attainable on-farm (AYw) yields. With sorghum yield gaps typically 59 % of the PYw in Australia, it is important to identify the drivers of these yield gaps and what are the optimal genotype (G) × environment (E) × management (M) combinations needed for sustainable improvement of sorghum productivity.</div></div><div><h3>Objectives</h3><div>APSIM farming systems modelling framework was used to simulate comprehensive G × E × M scenarios for sorghum in Australia using modern hybrids and current management to (1) define the PYw fronts and identify key drivers of spatial sorghum yield variability, and (2) determine desirable G × M combinations that can improve sorghum productivity and stability across the expected range of seasonal evapotranspiration (ET) for the Australian Target Population of Environments (TPE).</div></div><div><h3>Methods</h3><div>We use a set of 70 comprehensive national variety trials (NVT) data from 2017 – 2021 to parameterize and evaluate APSIM and then subsequently apply the model to define the range of G × E × M dimensions for sorghum TPEs in Australia. From these, we systematically simulate 93 sites-soil combinations for 103 years to extend the NVT to other fields beyond the NVT sites directly sampled. Using yield frontier analysis, we then define the expected PYw fronts, yield variability and the drivers of this variability.</div></div><div><h3>Results</h3><div>A non-linear relationship was observed between simulated grain yields and seasonal ET with most yields between 2.6 and 4.5 t ha<sup>−1</sup> associated with an ET of 167 – 420 mm. The yield opportunity frontiers were estimated to fall between 9.4 t ha<sup>−1</sup> (Q80 %) and 12.0 t ha<sup>−1</sup> (Q99 %). Nitrogen application rate at sowing explained the greatest component of the grain yield variation across most subregions. We found that most crop failures (defined as yield at or below Q10 %; 1.1 t ha<sup>−1</sup>) occurred under low N and high plant density with greater risks in North-East and North-Central Queensland. Yield failure risks were higher at higher densities, while earlier sowing buffered against these crop failures.</div></div><div><h3>Conclusions</h3><div>This study estimated PYw fronts and yield gap distributions for sorghum, elucidating the drivers of spatial sorghum yield variability for the Australian sorghum TPE. This finding highlights potential opportunities to close the on-farm yield gaps through optimized region-specific agronomic recommendations.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109858"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025001236","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Australia contributes ∼ 3 % of the global grain sorghum production despite relatively large gaps between water-limited potential (PYw) and attainable on-farm (AYw) yields. With sorghum yield gaps typically 59 % of the PYw in Australia, it is important to identify the drivers of these yield gaps and what are the optimal genotype (G) × environment (E) × management (M) combinations needed for sustainable improvement of sorghum productivity.

Objectives

APSIM farming systems modelling framework was used to simulate comprehensive G × E × M scenarios for sorghum in Australia using modern hybrids and current management to (1) define the PYw fronts and identify key drivers of spatial sorghum yield variability, and (2) determine desirable G × M combinations that can improve sorghum productivity and stability across the expected range of seasonal evapotranspiration (ET) for the Australian Target Population of Environments (TPE).

Methods

We use a set of 70 comprehensive national variety trials (NVT) data from 2017 – 2021 to parameterize and evaluate APSIM and then subsequently apply the model to define the range of G × E × M dimensions for sorghum TPEs in Australia. From these, we systematically simulate 93 sites-soil combinations for 103 years to extend the NVT to other fields beyond the NVT sites directly sampled. Using yield frontier analysis, we then define the expected PYw fronts, yield variability and the drivers of this variability.

Results

A non-linear relationship was observed between simulated grain yields and seasonal ET with most yields between 2.6 and 4.5 t ha−1 associated with an ET of 167 – 420 mm. The yield opportunity frontiers were estimated to fall between 9.4 t ha−1 (Q80 %) and 12.0 t ha−1 (Q99 %). Nitrogen application rate at sowing explained the greatest component of the grain yield variation across most subregions. We found that most crop failures (defined as yield at or below Q10 %; 1.1 t ha−1) occurred under low N and high plant density with greater risks in North-East and North-Central Queensland. Yield failure risks were higher at higher densities, while earlier sowing buffered against these crop failures.

Conclusions

This study estimated PYw fronts and yield gap distributions for sorghum, elucidating the drivers of spatial sorghum yield variability for the Australian sorghum TPE. This finding highlights potential opportunities to close the on-farm yield gaps through optimized region-specific agronomic recommendations.
综合产量差距分析,通过管理相互作用捕获澳大利亚宽地高粱种植系统的环境基因型
尽管澳大利亚的限水潜力(PYw)和可实现的农场产量(AYw)之间存在较大差距,但其高粱产量仍占全球高粱产量的3% ~ %。由于澳大利亚高粱的产量缺口通常占PYw的59% %,因此确定这些产量缺口的驱动因素以及可持续提高高粱生产力所需的最佳基因型(G) × 环境(E) × 管理(M)组合是很重要的。目的:利用apsim耕作系统建模框架,利用现代杂交组合和当前管理模式,对澳大利亚高粱的G × E × M综合情景进行模拟,以(1)确定PYw前沿,并确定高粱空间产量变异的关键驱动因素;(2)确定理想的G × M组合,以提高澳大利亚目标环境群体(TPE)在整个季节蒸散量(ET)预期范围内的高粱生产力和稳定性。方法利用2017 - 2021年70个综合国家品种试验(NVT)数据对APSIM进行参数化和评价,并应用该模型确定澳大利亚高粱TPEs的G × E × M维度范围。在此基础上,我们系统地模拟了93个地点103年的土壤组合,将NVT扩展到直接采样的NVT地点以外的其他领域。使用产量前沿分析,我们然后定义预期的PYw前沿,产量变化率和这种变化率的驱动因素。结果模拟粮食产量与季节蒸散发呈非线性关系,大部分产量在2.6 ~ 4.5 t ha - 1之间,蒸散发为167 ~ 420 mm。产量机会边界估计在9.4 t ha−1 (Q80 %)和12.0 t ha−1 (Q99 %)之间。播期施氮量是造成各次区域粮食产量变化的最大因素。我们发现大多数作物歉收(定义为产量等于或低于Q10 %;1.1 t ha−1)发生在低氮和高密度条件下,昆士兰州东北部和中北部风险较大。密度越高,产量失收的风险越高,而早播则缓冲了这些作物的失收。结论本研究估算了高粱的PYw锋面和产量缺口分布,阐明了澳大利亚高粱TPE产量空间变异的驱动因素。这一发现强调了通过优化特定区域的农艺建议来缩小农场产量差距的潜在机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信