Hierarchical synthesis of multi-layer graphene-like and nitrogen-doped graphitized carbon from dead leaf biomass for high-performance energy storage and CO₂ capture
{"title":"Hierarchical synthesis of multi-layer graphene-like and nitrogen-doped graphitized carbon from dead leaf biomass for high-performance energy storage and CO₂ capture","authors":"Raman Arunpandian , Mohanraj Kumar , Sahaya Infant Lasalle B , Paranthaman Vijayakumar , Jih-Hsing Chang","doi":"10.1016/j.jtice.2025.106100","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This research presents an integrated approach to convert dead leaf biomass into graphene-like materials through a combination of carbonization, activation, graphitization, and graphenization. Unlike conventional techniques that involve separate and a few sequential steps of carbonization, activation, graphitization, and graphenization to treat biomass, we executed the above four processes hierarchically.</div></div><div><h3>Methods</h3><div>DG (multi-layer graphene-like) and NG (nitrogen-doped graphitized carbon) were synthesized via hydrothermal and solvothermal impregnation followed by pyrolysis. Characterization was performed using Raman spectroscopy, BET analysis, XRD, XPS, HR-TEM, and FESEM. CO₂ adsorption was measured using TGA, and Energy storage performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge measurements, electrochemical impedance spectroscopy, and long-term stability tests, all conducted using a three-electrode configuration<strong>.</strong></div></div><div><h3>Significant Findings</h3><div>DG had a surface area of 1400 m²/g, CO₂ adsorption of 50 mg/g, and a specific capacitance of 184 F/g at 1 A/g. NG showed a surface area of 947 m²/g, CO₂ adsorption of 70 mg/g, and a specific capacitance of 206 F/g at 1 A/g. These results highlight the potential of biomass-derived graphene-like materials for sustainable CO₂ capture and energy storage.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106100"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This research presents an integrated approach to convert dead leaf biomass into graphene-like materials through a combination of carbonization, activation, graphitization, and graphenization. Unlike conventional techniques that involve separate and a few sequential steps of carbonization, activation, graphitization, and graphenization to treat biomass, we executed the above four processes hierarchically.
Methods
DG (multi-layer graphene-like) and NG (nitrogen-doped graphitized carbon) were synthesized via hydrothermal and solvothermal impregnation followed by pyrolysis. Characterization was performed using Raman spectroscopy, BET analysis, XRD, XPS, HR-TEM, and FESEM. CO₂ adsorption was measured using TGA, and Energy storage performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge measurements, electrochemical impedance spectroscopy, and long-term stability tests, all conducted using a three-electrode configuration.
Significant Findings
DG had a surface area of 1400 m²/g, CO₂ adsorption of 50 mg/g, and a specific capacitance of 184 F/g at 1 A/g. NG showed a surface area of 947 m²/g, CO₂ adsorption of 70 mg/g, and a specific capacitance of 206 F/g at 1 A/g. These results highlight the potential of biomass-derived graphene-like materials for sustainable CO₂ capture and energy storage.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.