Time-dependent seismic safety assessment of aging steel bridge piers in varied atmospheric conditions

IF 5.6 1区 工程技术 Q1 ENGINEERING, CIVIL
Qiang Zhang , Zhenlei Jia , Jianian Wen , Wensu Chen , Faiz Shaikh , Qiang Han
{"title":"Time-dependent seismic safety assessment of aging steel bridge piers in varied atmospheric conditions","authors":"Qiang Zhang ,&nbsp;Zhenlei Jia ,&nbsp;Jianian Wen ,&nbsp;Wensu Chen ,&nbsp;Faiz Shaikh ,&nbsp;Qiang Han","doi":"10.1016/j.engstruct.2025.120182","DOIUrl":null,"url":null,"abstract":"<div><div>Steel bridge piers are typically considered to have good seismic performance and ductility. However, long-term exposure to atmospheric environment can lead to corrosion of the steel bridge piers, which may lead to different performance and failure modes throughout life-cycle stages. This study aims to explore the time-varying seismic performance evolution of steel bridge piers in different atmospheric environments and propose a time-varying seismic evaluation method based on performance requirements. First, a numerical simulation method for aging steel bridge piers is developed by considering the time-varying model of corrosion characteristic parameters. The degradation patterns and failure modes of steel bridge piers with varying parameters throughout their entire life-cycle in industrial and marine atmospheric environments are then analyzed. The concept of time-varying degradation ratio and aging damage index is used to quantify the effects of time-varying factors on seismic performance. Finally, formulas for predicting critical displacement values based on performance requirements are established, and a time-varying seismic performance evaluation method and process are presented. The results show that the seismic performance degradation of aging steel bridge piers caused by different service environments can reach up to 23.7 %. In addition, in the early stages of service, seismic performance of aging steel piers may be significantly reduced, with the displacement ratio for safety performance points decreasing by up to 28.6 %. Corrosion leads to more pronounced plastic deformation and stress concentration in the failure mode of aging steel piers. The aging damage index is affected by the coupling of corrosion parameters and geometric parameters. As service time progresses, the value and variability of aging damage index of steel piers increase. The accuracy of the formula for predicting time-varying critical displacement values, considering performance requirements, is validated through supplementary models and previous test results. The results underscore the importance of considering aging effect and environmental factors in the seismic performance evaluation. The proposed time-varying seismic performance evaluation method can provide reference for the life-cycle seismic design and verification of aging steel bridges.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"333 ","pages":"Article 120182"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625005735","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Steel bridge piers are typically considered to have good seismic performance and ductility. However, long-term exposure to atmospheric environment can lead to corrosion of the steel bridge piers, which may lead to different performance and failure modes throughout life-cycle stages. This study aims to explore the time-varying seismic performance evolution of steel bridge piers in different atmospheric environments and propose a time-varying seismic evaluation method based on performance requirements. First, a numerical simulation method for aging steel bridge piers is developed by considering the time-varying model of corrosion characteristic parameters. The degradation patterns and failure modes of steel bridge piers with varying parameters throughout their entire life-cycle in industrial and marine atmospheric environments are then analyzed. The concept of time-varying degradation ratio and aging damage index is used to quantify the effects of time-varying factors on seismic performance. Finally, formulas for predicting critical displacement values based on performance requirements are established, and a time-varying seismic performance evaluation method and process are presented. The results show that the seismic performance degradation of aging steel bridge piers caused by different service environments can reach up to 23.7 %. In addition, in the early stages of service, seismic performance of aging steel piers may be significantly reduced, with the displacement ratio for safety performance points decreasing by up to 28.6 %. Corrosion leads to more pronounced plastic deformation and stress concentration in the failure mode of aging steel piers. The aging damage index is affected by the coupling of corrosion parameters and geometric parameters. As service time progresses, the value and variability of aging damage index of steel piers increase. The accuracy of the formula for predicting time-varying critical displacement values, considering performance requirements, is validated through supplementary models and previous test results. The results underscore the importance of considering aging effect and environmental factors in the seismic performance evaluation. The proposed time-varying seismic performance evaluation method can provide reference for the life-cycle seismic design and verification of aging steel bridges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信