Leonardo P. Bonorino , Lucas P. Dutra , Filipe J. dos Santos
{"title":"Convergence at infinity for solutions of nonhomogeneous degenerate and singular elliptic equations in exterior domains","authors":"Leonardo P. Bonorino , Lucas P. Dutra , Filipe J. dos Santos","doi":"10.1016/j.jmaa.2025.129476","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the existence of the limit at infinity of weak solutions of the nonhomogeneous equation <span><math><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>A</mi><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mspace></mspace><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>f</mi></math></span> in the exterior domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></math></span>, where <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a compact set. Indeed, for any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we prove that the solutions converge at infinity if <em>A</em> satisfies some growth conditions and <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> has some decay property. Moreover, for <span><math><mi>p</mi><mo>></mo><mi>n</mi></math></span> we can show that the solutions converge at some rate and, for <span><math><mi>p</mi><mo><</mo><mi>n</mi></math></span>, the convergence holds even for some unbounded <em>f</em>. In addition, for <span><math><mi>p</mi><mo>></mo><mi>n</mi></math></span>, we show that for any continuous function <em>ϕ</em> defined on ∂<em>K</em>, the problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>A</mi><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mspace></mspace><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>f</mi></mtd><mtd><mtext> in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></mtd></mtr><mtr><mtd><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>,</mo></mtd><mtd><mtext> on </mtext><mo>∂</mo><mi>K</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a bounded weak solution in <span><math><mi>C</mi><mo>(</mo><mover><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>∩</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi><mo>)</mo></math></span>, provided <em>A</em> and <em>f</em> are suitable. Furthermore, if <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, then this solution is in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129476"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002574","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the existence of the limit at infinity of weak solutions of the nonhomogeneous equation in the exterior domain , where is a compact set. Indeed, for any and , we prove that the solutions converge at infinity if A satisfies some growth conditions and has some decay property. Moreover, for we can show that the solutions converge at some rate and, for , the convergence holds even for some unbounded f. In addition, for , we show that for any continuous function ϕ defined on ∂K, the problem has a bounded weak solution in , provided A and f are suitable. Furthermore, if , then this solution is in .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.