Richard Fürst, Dustin Häßler, Ludwig Stelzner, Sascha Hothan
{"title":"Fire resistance of existing steel structures with aged intumescent coating based on an in situ test method","authors":"Richard Fürst, Dustin Häßler, Ludwig Stelzner, Sascha Hothan","doi":"10.1016/j.firesaf.2025.104380","DOIUrl":null,"url":null,"abstract":"<div><div>Intumescent coatings are commonly used in civil engineering to increase the fire resistance of steel structures. Exposed to fire, the intumescent coating reacts and forms a thermal protective char around the steel member. Thus, the heating of the steel is significantly slowed down and the fire resistance can be improved. Information regarding the scope of application and the durability of intumescent coatings are given in national approvals or European Technical Assessment documents. Due to the environmental conditions, intumescent coatings are subjected to ageing effects, which can reduce the durability and their thermal protection performance. To predict the durability for several years, during the approval procedure the behaviour of intumescent coatings is predominantly extrapolated based on accelerated artificial ageing. The established German and European assessment procedures to test and assess durability assume a working life of at least 10 years. Additional evidence may be required for longer periods. However, at present there is no method of verifying the thermal performance of existing structural members on site. For this reason, BAM is conducting the research project \"INSIST\" [1] to develop a minimally invasive in situ test method to determine the fire resistance of existing steel structures with applied intumescent coating. The investigation includes the development of a mobile prototype furnace. The paper describes the test setup, the developed prototype furnace, and the results of the performed test programme on uncoated and coated steel specimens. Based on this, recommendations for the test procedure are given.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104380"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037971122500044X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Intumescent coatings are commonly used in civil engineering to increase the fire resistance of steel structures. Exposed to fire, the intumescent coating reacts and forms a thermal protective char around the steel member. Thus, the heating of the steel is significantly slowed down and the fire resistance can be improved. Information regarding the scope of application and the durability of intumescent coatings are given in national approvals or European Technical Assessment documents. Due to the environmental conditions, intumescent coatings are subjected to ageing effects, which can reduce the durability and their thermal protection performance. To predict the durability for several years, during the approval procedure the behaviour of intumescent coatings is predominantly extrapolated based on accelerated artificial ageing. The established German and European assessment procedures to test and assess durability assume a working life of at least 10 years. Additional evidence may be required for longer periods. However, at present there is no method of verifying the thermal performance of existing structural members on site. For this reason, BAM is conducting the research project "INSIST" [1] to develop a minimally invasive in situ test method to determine the fire resistance of existing steel structures with applied intumescent coating. The investigation includes the development of a mobile prototype furnace. The paper describes the test setup, the developed prototype furnace, and the results of the performed test programme on uncoated and coated steel specimens. Based on this, recommendations for the test procedure are given.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.