Solvent-assisted insertion of molecular supports for enhanced separation performance and stability of thin film composite reverse osmosis membranes

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Chia-Ming Chang , Qipeng Zhao , Shing Bor Chen
{"title":"Solvent-assisted insertion of molecular supports for enhanced separation performance and stability of thin film composite reverse osmosis membranes","authors":"Chia-Ming Chang ,&nbsp;Qipeng Zhao ,&nbsp;Shing Bor Chen","doi":"10.1016/j.memsci.2025.124005","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative approach to enhance the separation performance and stability of thin-film composite (TFC) reverse osmosis (RO) membranes through post-treatment by inserting 15-crown-5 (CE15) as molecular supports, assisted by methanol. By varying the CE15 concentration (0–4 wt%), the physicochemical properties of the membranes can be regulated with significantly improved separation performance. Comprehensive characterizations reveal that an optimal CE15 concentration of 1 wt% increases the water permeance by 148 % (from 1.86 to 4.61 LMH bar<sup>−1</sup>) while maintaining a high salt rejection of 98.9 %. Additionally, the chelation of CE15 with Li<sup>+</sup> or Na<sup>+</sup> further enhances the membrane's structural robustness, ensuring long-term stability. Over a 72-h period, the treated membranes exhibit only a 3.4 % reduction in water permeance, compared to a 15.8 % decline observed for the untreated membranes. This facile post-treatment method offers a scalable and effective solution to improve the permeability, selectivity, and durability of TFC membranes, presenting a promising advancement for desalination and water treatment applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"725 ","pages":"Article 124005"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825003187","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative approach to enhance the separation performance and stability of thin-film composite (TFC) reverse osmosis (RO) membranes through post-treatment by inserting 15-crown-5 (CE15) as molecular supports, assisted by methanol. By varying the CE15 concentration (0–4 wt%), the physicochemical properties of the membranes can be regulated with significantly improved separation performance. Comprehensive characterizations reveal that an optimal CE15 concentration of 1 wt% increases the water permeance by 148 % (from 1.86 to 4.61 LMH bar−1) while maintaining a high salt rejection of 98.9 %. Additionally, the chelation of CE15 with Li+ or Na+ further enhances the membrane's structural robustness, ensuring long-term stability. Over a 72-h period, the treated membranes exhibit only a 3.4 % reduction in water permeance, compared to a 15.8 % decline observed for the untreated membranes. This facile post-treatment method offers a scalable and effective solution to improve the permeability, selectivity, and durability of TFC membranes, presenting a promising advancement for desalination and water treatment applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信