Numerical investigation of thermal radiation effects on chemical reactive flow of microbes in hybrid nanofluid over a rotating disk

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mouloud Aoudia , Faiza Benabdallah , Ansar Abbas , Dana Mohammad Khidhir , Dennis Ling Chuan Ching , Abid Ali Memon , Munawar Abbas , Ilyas Khan , Saba Liaqat , Ahmed M. Galal
{"title":"Numerical investigation of thermal radiation effects on chemical reactive flow of microbes in hybrid nanofluid over a rotating disk","authors":"Mouloud Aoudia ,&nbsp;Faiza Benabdallah ,&nbsp;Ansar Abbas ,&nbsp;Dana Mohammad Khidhir ,&nbsp;Dennis Ling Chuan Ching ,&nbsp;Abid Ali Memon ,&nbsp;Munawar Abbas ,&nbsp;Ilyas Khan ,&nbsp;Saba Liaqat ,&nbsp;Ahmed M. Galal","doi":"10.1016/j.jrras.2025.101435","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs numerical modelling to investigate the outcome of thermal radiation on chemical reactive flow of a hybrid nanofluid along a disk with oxytactic and gyrotactic microbes are examined. The heat generation and Stefan blowing impacts are taken into account. The hybrid (Diamond <span><math><mrow><mo>−</mo><mi>C</mi><msub><mi>o</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>/</mo><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></math></span>) nanofluid flow model contains of nanoparticles of diamond <span><math><mrow><mo>(</mo><mrow><mi>N</mi><mi>D</mi></mrow><mo>)</mo></mrow></math></span>, Cobalt oxide (<span><math><mrow><mrow><mi>C</mi><msub><mi>o</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></math></span> dissolved in water. The constitutive equations, encompassing the solutal, energy, momentum, and gyrotactic microbes’ equations, are formulated and converted using the similarity approximation into a system of partial differential equations (PDEs). These resulting equations are then mathematically solved utilizing the Bvp4c method. There are many uses for the proposed model in the domains of engineering, biomedicine, and industry. Increased heat transmission is essential in the design of thermal management systems, such as cooling mechanisms in microelectronics. The study helps to understand fluid flow dynamics in lab-on-a-chip devices and biosensors in the biomedical industry. Microorganisms in the hybrid nanofluid flow also provide information about bioconvection processes, which is pertinent to microbial fuel cells and wastewater treatment. Additionally, the rotating disk configuration and Marangoni convection principles ensure accuracy and efficiency in industrial operations like coating technologies, thin-film deposition, and crystal growth.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101435"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725001475","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs numerical modelling to investigate the outcome of thermal radiation on chemical reactive flow of a hybrid nanofluid along a disk with oxytactic and gyrotactic microbes are examined. The heat generation and Stefan blowing impacts are taken into account. The hybrid (Diamond Co3O4/H2O) nanofluid flow model contains of nanoparticles of diamond (ND), Cobalt oxide (Co3O4) dissolved in water. The constitutive equations, encompassing the solutal, energy, momentum, and gyrotactic microbes’ equations, are formulated and converted using the similarity approximation into a system of partial differential equations (PDEs). These resulting equations are then mathematically solved utilizing the Bvp4c method. There are many uses for the proposed model in the domains of engineering, biomedicine, and industry. Increased heat transmission is essential in the design of thermal management systems, such as cooling mechanisms in microelectronics. The study helps to understand fluid flow dynamics in lab-on-a-chip devices and biosensors in the biomedical industry. Microorganisms in the hybrid nanofluid flow also provide information about bioconvection processes, which is pertinent to microbial fuel cells and wastewater treatment. Additionally, the rotating disk configuration and Marangoni convection principles ensure accuracy and efficiency in industrial operations like coating technologies, thin-film deposition, and crystal growth.
旋转圆盘上混合纳米流体中微生物化学反应流动的热辐射效应数值研究
本研究采用数值模拟的方法研究了热辐射对混合纳米流体沿圆盘化学反应流动的影响。考虑了产生热量和风机吹风的影响。混合(金刚石- Co3O4/H2O)纳米流体模型包含溶解在水中的金刚石(ND)、氧化钴(Co3O4)纳米颗粒。本构方程,包括溶质、能量、动量和回旋微生物的方程,被公式化并使用相似近似转换为偏微分方程(PDEs)系统。然后利用Bvp4c方法对这些结果方程进行数学求解。在工程、生物医学和工业领域中,提出的模型有许多用途。增加传热是必不可少的热管理系统的设计,如在微电子冷却机制。该研究有助于了解生物医学工业中芯片实验室设备和生物传感器的流体流动动力学。混合纳米流体中的微生物还提供了有关生物对流过程的信息,这与微生物燃料电池和废水处理有关。此外,旋转磁盘配置和Marangoni对流原理确保了工业操作的准确性和效率,如涂层技术,薄膜沉积和晶体生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信