Haonan Chen , Sagar Saren , Xuetao Liu , Ji Hwan Jeong , Takahiko Miyazaki , Young-Deuk Kim , Kyaw Thu
{"title":"Diffusion mechanism and adsorbed-phase classification—molecular simulation insights from Lennard-Jones fluid on MOFs","authors":"Haonan Chen , Sagar Saren , Xuetao Liu , Ji Hwan Jeong , Takahiko Miyazaki , Young-Deuk Kim , Kyaw Thu","doi":"10.1016/j.isci.2025.112181","DOIUrl":null,"url":null,"abstract":"<div><div>Physisorption of gases has been widely applied in thermal energy utilization and purification processes. Diffusion in porous media has been well studied. However, molecular-scale adsorbate diffusion mechanism remains unexplored. In this study, molecular dynamics have been employed to elucidate the diffusion behaviors of liquid and gaseous methane adsorbed in Cu-BTC (Copper(2+) 1,3,5-benzenetricarboxylate). Based on the energy distribution and trajectories of adsorbed molecules, a hypothesis is proposed that the adsorbed phase can be classified into four types: bound molecules (oscillate around a specific region of the adsorbent), generally adsorbed molecules (within the range of surface interaction and possess negative total energy), non-adsorbed molecules (within the range of surface interaction, but having positive total energy), and free molecules (beyond the range of surface interaction). To support this hypothesis, further simulation of methane adsorption in MOF-5 (Zn<sub>4</sub>O(BDC)<sub>3</sub>) has been conducted and compared with existing experimental data, indicating the hypothesis has broader applicability.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 4","pages":"Article 112181"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225004420","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Physisorption of gases has been widely applied in thermal energy utilization and purification processes. Diffusion in porous media has been well studied. However, molecular-scale adsorbate diffusion mechanism remains unexplored. In this study, molecular dynamics have been employed to elucidate the diffusion behaviors of liquid and gaseous methane adsorbed in Cu-BTC (Copper(2+) 1,3,5-benzenetricarboxylate). Based on the energy distribution and trajectories of adsorbed molecules, a hypothesis is proposed that the adsorbed phase can be classified into four types: bound molecules (oscillate around a specific region of the adsorbent), generally adsorbed molecules (within the range of surface interaction and possess negative total energy), non-adsorbed molecules (within the range of surface interaction, but having positive total energy), and free molecules (beyond the range of surface interaction). To support this hypothesis, further simulation of methane adsorption in MOF-5 (Zn4O(BDC)3) has been conducted and compared with existing experimental data, indicating the hypothesis has broader applicability.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.