The impact of the epoxy thin-film layer on microwave-based SnO2 gas sensor for NO2 detection

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
D. Grochala , A. Paleczek , K. Staszek , M. Kocoń , K. Segełyn , Ł. Błajszczak , A. Rydosz
{"title":"The impact of the epoxy thin-film layer on microwave-based SnO2 gas sensor for NO2 detection","authors":"D. Grochala ,&nbsp;A. Paleczek ,&nbsp;K. Staszek ,&nbsp;M. Kocoń ,&nbsp;K. Segełyn ,&nbsp;Ł. Błajszczak ,&nbsp;A. Rydosz","doi":"10.1016/j.sna.2025.116498","DOIUrl":null,"url":null,"abstract":"<div><div>A microwave gas sensor with tin dioxide as a gas-sensitive layer and epoxy thin film for enhanced detection of nitrogen dioxide in a harsh environment with high relative humidity content is proposed. An optimized transmission line type of sensors operated in the 1.5 GHz – 4.5 GHz was tested under exposure to: NO<sub>2</sub> in the 0–100 ppm range, operating temperature in the range of 22–60 °C and relative humidity 0–85 % range. The cross-sensitivity was tested under exposure to common volatile organic compounds such as acetone, and ethanol. The sensors’ response (S) is given in phase changes based on wideband measurements. The advantage of wideband measurements compared to a single value is that they are based on multiple measurements taken at different frequencies. This greatly suppresses noise and enables measuring low target-gas concentrations within environments of high interfering compounds. The experimental results confirmed that using an additional epoxy thin film layer can reduce the impact of relative humidity on the gas-sensing properties of nitrogen dioxide in the microwave frequency range. The results should be considered a starting point for further investigation and pave the way for implementing microwave-gas sensors in harsh environments.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"388 ","pages":"Article 116498"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725003048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A microwave gas sensor with tin dioxide as a gas-sensitive layer and epoxy thin film for enhanced detection of nitrogen dioxide in a harsh environment with high relative humidity content is proposed. An optimized transmission line type of sensors operated in the 1.5 GHz – 4.5 GHz was tested under exposure to: NO2 in the 0–100 ppm range, operating temperature in the range of 22–60 °C and relative humidity 0–85 % range. The cross-sensitivity was tested under exposure to common volatile organic compounds such as acetone, and ethanol. The sensors’ response (S) is given in phase changes based on wideband measurements. The advantage of wideband measurements compared to a single value is that they are based on multiple measurements taken at different frequencies. This greatly suppresses noise and enables measuring low target-gas concentrations within environments of high interfering compounds. The experimental results confirmed that using an additional epoxy thin film layer can reduce the impact of relative humidity on the gas-sensing properties of nitrogen dioxide in the microwave frequency range. The results should be considered a starting point for further investigation and pave the way for implementing microwave-gas sensors in harsh environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信