{"title":"Changes in soil organic carbon and phosphorus status under three different land use systems in a tropical Ultisol","authors":"M.D.P. Nayanarangani , U.W.A. Vitharana , D. Kumaragamage , N.J. Casson","doi":"10.1016/j.geodrs.2025.e00950","DOIUrl":null,"url":null,"abstract":"<div><div>Anthropogenic land use systems and their management practices influence carbon (C) accumulation and storage and phosphorus (P) dynamics in soils. However, information on changes in soil organic C (SOC) reserves and P status in intensive annual cropping versus commercial perennial cropping systems is limited. This study examined the impact of long-term annual (vegetable) and perennial (tea) cultivation on the soil P and SOC status of a Tropical Ultisol compared to replanted forest land use. Surface (0–15 cm) soil samples obtained from forest- (25 ha), tea- (20 ha), and vegetable- (30 ha) lands within a micro-catchment were analyzed for available P (Mehlich 3-P), P fractions, SOC, permanganate oxidizable C (POxC, representing active SOC), and pH. Soils under long-term vegetable and tea with frequent applications of fertilizers had 78-fold and 7-fold greater available P (356.3 and 33.0 mg kg<sup>−1</sup>, respectively) than forest (4.6 mg kg<sup>−1</sup>) soils. Moreover, vegetable-grown soils had greater P concentrations in labile, moderately labile, and recalcitrant fractions than tea-grown and forest soils. Active C fraction in tea-grown soils (899 mg kg-1) was 2-fold than that of vegetable-grown soils (484 mg kg<sup>−1</sup>), but similar to forest soils (804 mg kg<sup>−1</sup>). The SOC in tea-grown and forest soils were similar (6.05 % and 5.84 %, respectively), but significantly higher than in vegetable-grown soil (4.50 %). Thus, soils from intensive annual cropping systems showed substantial P accumulations and lower SOC quantity and quality than perennial cropping systems, warranting better nutrient and SOC management and soil conservation measures to prevent further soil deterioration with annual cropping.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"41 ","pages":"Article e00950"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009425000355","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic land use systems and their management practices influence carbon (C) accumulation and storage and phosphorus (P) dynamics in soils. However, information on changes in soil organic C (SOC) reserves and P status in intensive annual cropping versus commercial perennial cropping systems is limited. This study examined the impact of long-term annual (vegetable) and perennial (tea) cultivation on the soil P and SOC status of a Tropical Ultisol compared to replanted forest land use. Surface (0–15 cm) soil samples obtained from forest- (25 ha), tea- (20 ha), and vegetable- (30 ha) lands within a micro-catchment were analyzed for available P (Mehlich 3-P), P fractions, SOC, permanganate oxidizable C (POxC, representing active SOC), and pH. Soils under long-term vegetable and tea with frequent applications of fertilizers had 78-fold and 7-fold greater available P (356.3 and 33.0 mg kg−1, respectively) than forest (4.6 mg kg−1) soils. Moreover, vegetable-grown soils had greater P concentrations in labile, moderately labile, and recalcitrant fractions than tea-grown and forest soils. Active C fraction in tea-grown soils (899 mg kg-1) was 2-fold than that of vegetable-grown soils (484 mg kg−1), but similar to forest soils (804 mg kg−1). The SOC in tea-grown and forest soils were similar (6.05 % and 5.84 %, respectively), but significantly higher than in vegetable-grown soil (4.50 %). Thus, soils from intensive annual cropping systems showed substantial P accumulations and lower SOC quantity and quality than perennial cropping systems, warranting better nutrient and SOC management and soil conservation measures to prevent further soil deterioration with annual cropping.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.