Ultrasound-based statistical shape modeling for quantifying femoral trochlear bone shape post-ACLR

Arjun Parmar , Anthony A. Gatti , Ryan Fajardo , Matthew S. Harkey
{"title":"Ultrasound-based statistical shape modeling for quantifying femoral trochlear bone shape post-ACLR","authors":"Arjun Parmar ,&nbsp;Anthony A. Gatti ,&nbsp;Ryan Fajardo ,&nbsp;Matthew S. Harkey","doi":"10.1016/j.ostima.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Traditional assessments of femoral bone shape are not always available and do not adequately describe the full complexity of concave bone shape. We aimed to develop and validate an ultrasound-based statistical shape model (SSM) and a derived bone shape score (B-score) to quantify the femoral trochlear morphology associated with anterior cruciate ligament reconstruction (ACLR).</div></div><div><h3>Design</h3><div>This was a cross-sectional investigation involving 20 individuals with and 28 individuals without a history of ACLR. Bilateral ultrasound images of the femoral trochlear groove were acquired and analyzed. Both the SSM and B-score were validated using 5-fold cross-validation, assessing reconstruction and classification accuracy, respectively.</div></div><div><h3>Results</h3><div>In held-out test data, the SSM captured over 99% of the bone shape variance with minimal reconstruction error (RMSE = 0.027 ± 0.004 mm). On test data, the B-score accurately quantified bone shape associated with ACLR, demonstrating high accuracy (92.42%), sensitivity (97.37%), specificity (85.71%), and AUROC (0.95). A B-score threshold of 1.41 standard deviations from the mean healthy bone shape was identified for classifying ACLR history.</div></div><div><h3>Conclusions</h3><div>The ultrasound-based SSM and derived B-score provide a valid and accessible method for quantifying femoral trochlear bone shape changes post-ACLR. This approach offers potential for early detection of bone shape changes associated with disease and injury, improving long-term outcomes for ACLR patients. Future research should focus on enhancing model generalizability and assessment of bone shape changes longitudinally.</div></div>","PeriodicalId":74378,"journal":{"name":"Osteoarthritis imaging","volume":"5 1","pages":"Article 100255"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772654124000898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Traditional assessments of femoral bone shape are not always available and do not adequately describe the full complexity of concave bone shape. We aimed to develop and validate an ultrasound-based statistical shape model (SSM) and a derived bone shape score (B-score) to quantify the femoral trochlear morphology associated with anterior cruciate ligament reconstruction (ACLR).

Design

This was a cross-sectional investigation involving 20 individuals with and 28 individuals without a history of ACLR. Bilateral ultrasound images of the femoral trochlear groove were acquired and analyzed. Both the SSM and B-score were validated using 5-fold cross-validation, assessing reconstruction and classification accuracy, respectively.

Results

In held-out test data, the SSM captured over 99% of the bone shape variance with minimal reconstruction error (RMSE = 0.027 ± 0.004 mm). On test data, the B-score accurately quantified bone shape associated with ACLR, demonstrating high accuracy (92.42%), sensitivity (97.37%), specificity (85.71%), and AUROC (0.95). A B-score threshold of 1.41 standard deviations from the mean healthy bone shape was identified for classifying ACLR history.

Conclusions

The ultrasound-based SSM and derived B-score provide a valid and accessible method for quantifying femoral trochlear bone shape changes post-ACLR. This approach offers potential for early detection of bone shape changes associated with disease and injury, improving long-term outcomes for ACLR patients. Future research should focus on enhancing model generalizability and assessment of bone shape changes longitudinally.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Osteoarthritis imaging
Osteoarthritis imaging Radiology and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信