Intraoceanic active rifting revealed by deep seismic reflection imaging in the southern Bay of Bengal, northeastern Indian Ocean

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Luning Shang , Gang Hu , Thomas P. Ferrand , Jun Pan , Chuansheng Yang
{"title":"Intraoceanic active rifting revealed by deep seismic reflection imaging in the southern Bay of Bengal, northeastern Indian Ocean","authors":"Luning Shang ,&nbsp;Gang Hu ,&nbsp;Thomas P. Ferrand ,&nbsp;Jun Pan ,&nbsp;Chuansheng Yang","doi":"10.1016/j.epsl.2025.119328","DOIUrl":null,"url":null,"abstract":"<div><div>Oceanic domains form via the break-up of the continental lithosphere resulting from extensional tectonic processes that eventually create passive margins. Whether active rifting and subsequent volcanic break-up occur within the oceanic lithosphere remains ambiguous. New seismic reflection data from the southern Bay of Bengal, where multiple mantle plumes were active during the late Cretaceous, provide visual evidence for resolving this issue. The studied seismic profile reveals an ∼300-km-wide anomalous crustal domain characterized by basement highs, irregular Moho depth fluctuations, and a thick pile of well-organized upper crustal dipping reflections. These features resemble those of volcanic passive margins, i.e., stacked volcanoclastic layers, seaward-dipping reflectors, underplating and failed rifting centers. Here, we document a similar setting within an intraoceanic domain, which is consistent with the active rifting model, with an excess magma supply presumably associated with active mantle upwelling. The structures described in the present study require a multistage dynamic process during local impingement of the northward-drifting Indian oceanic lithosphere by mantle upwelling, with a transition from thermal doming, intense volcanic eruptions and magmatic underplating, to lithospheric extension and necking, and finally to an incipient but failed rift. The volcanism initiated at ∼84–85 Ma, and volcanics were emplaced on young oceanic lithosphere with an age of ∼7–8 Ma. The active mantle upwelling that promoted the intraoceanic rifting was likely driven by a weak or pulsed branch of the Kerguelen Plume, which is also involved in producing the Ninety-East Ridge. These findings help further understand the processes dominating lithospheric breakup and extend some concepts seaward from passive margins to the interior of the oceanic lithospheric domain.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"658 ","pages":"Article 119328"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X2500127X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Oceanic domains form via the break-up of the continental lithosphere resulting from extensional tectonic processes that eventually create passive margins. Whether active rifting and subsequent volcanic break-up occur within the oceanic lithosphere remains ambiguous. New seismic reflection data from the southern Bay of Bengal, where multiple mantle plumes were active during the late Cretaceous, provide visual evidence for resolving this issue. The studied seismic profile reveals an ∼300-km-wide anomalous crustal domain characterized by basement highs, irregular Moho depth fluctuations, and a thick pile of well-organized upper crustal dipping reflections. These features resemble those of volcanic passive margins, i.e., stacked volcanoclastic layers, seaward-dipping reflectors, underplating and failed rifting centers. Here, we document a similar setting within an intraoceanic domain, which is consistent with the active rifting model, with an excess magma supply presumably associated with active mantle upwelling. The structures described in the present study require a multistage dynamic process during local impingement of the northward-drifting Indian oceanic lithosphere by mantle upwelling, with a transition from thermal doming, intense volcanic eruptions and magmatic underplating, to lithospheric extension and necking, and finally to an incipient but failed rift. The volcanism initiated at ∼84–85 Ma, and volcanics were emplaced on young oceanic lithosphere with an age of ∼7–8 Ma. The active mantle upwelling that promoted the intraoceanic rifting was likely driven by a weak or pulsed branch of the Kerguelen Plume, which is also involved in producing the Ninety-East Ridge. These findings help further understand the processes dominating lithospheric breakup and extend some concepts seaward from passive margins to the interior of the oceanic lithospheric domain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信