Dual clumped isotopes reveal an out-of-equilibrium state in shallow-water carbonate sediments on Great Bahama Bank

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Chaojin Lu , Megan E. Moore , Peter K. Swart
{"title":"Dual clumped isotopes reveal an out-of-equilibrium state in shallow-water carbonate sediments on Great Bahama Bank","authors":"Chaojin Lu ,&nbsp;Megan E. Moore ,&nbsp;Peter K. Swart","doi":"10.1016/j.epsl.2025.119322","DOIUrl":null,"url":null,"abstract":"<div><div>While non-skeletal carbonate grains and muds precipitated on shallow-water platforms have been widely used to reconstruct past ocean temperatures and chemistry, the question remains as to what degree the geochemical signatures of carbonate sediments are in equilibrium with their original environments. To evaluate the extent of equilibrium, we have applied the dual clumped isotope proxy (Δ<sub>47</sub> and Δ<sub>48</sub>) to surface sediments (aragonite &gt; 90 %, <em>n</em> = 150) ranging from mudstones (&lt; 63 μm) to non-skeletal grainstones from the Great Bahama Bank. While there is no statistical difference in the mean Δ<sub>47</sub> values of the various facies, there are very large ranges of Δ<sub>47</sub> values within each type (∼ 0.1 ‰) equivalent to a temperature uncertainty of 25 °C. Our Δ<sub>48</sub> data reveals an out-of-equilibrium state where the muddy sediments have more positive values than the equilibrium, while the grainy facies are more negative. The positive Δ<sub>48</sub> disequilibrium in the muds is proposed to be a result of the photosynthetic removal of CO<sub>2</sub> caused by the activity of cyanobacteria turns promotes the precipitation of calcium carbonate in the water column (whitings area). In contrast, the grainstones, that are mainly composed of peloids, show a negative Δ<sub>48</sub> disequilibrium resulting from the CO<sub>2</sub> absorption by a complex mixture of biogeochemical processes. Our findings highlight the importance of kinetic processes in shaping non-skeletal carbonate factories and defining their geochemistry.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"658 ","pages":"Article 119322"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25001219","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While non-skeletal carbonate grains and muds precipitated on shallow-water platforms have been widely used to reconstruct past ocean temperatures and chemistry, the question remains as to what degree the geochemical signatures of carbonate sediments are in equilibrium with their original environments. To evaluate the extent of equilibrium, we have applied the dual clumped isotope proxy (Δ47 and Δ48) to surface sediments (aragonite > 90 %, n = 150) ranging from mudstones (< 63 μm) to non-skeletal grainstones from the Great Bahama Bank. While there is no statistical difference in the mean Δ47 values of the various facies, there are very large ranges of Δ47 values within each type (∼ 0.1 ‰) equivalent to a temperature uncertainty of 25 °C. Our Δ48 data reveals an out-of-equilibrium state where the muddy sediments have more positive values than the equilibrium, while the grainy facies are more negative. The positive Δ48 disequilibrium in the muds is proposed to be a result of the photosynthetic removal of CO2 caused by the activity of cyanobacteria turns promotes the precipitation of calcium carbonate in the water column (whitings area). In contrast, the grainstones, that are mainly composed of peloids, show a negative Δ48 disequilibrium resulting from the CO2 absorption by a complex mixture of biogeochemical processes. Our findings highlight the importance of kinetic processes in shaping non-skeletal carbonate factories and defining their geochemistry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信