John Henry Rakini Chanderasekaran , Subramanian Nithiyanantham
{"title":"Spectroscopic, physico-chemical and thermodynamic investigatations on 3,6-dihydroxypyridazine – Density functional theory (DFT)","authors":"John Henry Rakini Chanderasekaran , Subramanian Nithiyanantham","doi":"10.1016/j.nxmate.2025.100606","DOIUrl":null,"url":null,"abstract":"<div><div>The use of molecular spectroscopy has grown significantly as a method for analysis, examine the spectra of atoms and molecules provides a thorough understanding of their composition. To grasp their structure, it's essential to have a solid grasp of the forces holding them together. A comprehensive theoretical and experimental investigation into the optimized shape and vibrational frequencies of 3,6-dihydroxypyridazine (DHP) was carried out employing the DFT/B3LYP method with a 6–31 +G level of theory. For these calculations, we utilized the Gaussian 09w program, which was backed by Gauss View 5.08 software. In this study documented the FT-IR and FT-Raman spectra for the chosen system. Further, determined Mulliken population analysis, Molecular electrostatic potential (MEP), HOMO-LUMO energy gap, and Reduced density gradient of the title compound were also analyzed. Finally, it is explored the global reactivity descriptors and the temperature-dependent thermodynamic properties of the compound using the B3LYP/6–31 +G method.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100606"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of molecular spectroscopy has grown significantly as a method for analysis, examine the spectra of atoms and molecules provides a thorough understanding of their composition. To grasp their structure, it's essential to have a solid grasp of the forces holding them together. A comprehensive theoretical and experimental investigation into the optimized shape and vibrational frequencies of 3,6-dihydroxypyridazine (DHP) was carried out employing the DFT/B3LYP method with a 6–31 +G level of theory. For these calculations, we utilized the Gaussian 09w program, which was backed by Gauss View 5.08 software. In this study documented the FT-IR and FT-Raman spectra for the chosen system. Further, determined Mulliken population analysis, Molecular electrostatic potential (MEP), HOMO-LUMO energy gap, and Reduced density gradient of the title compound were also analyzed. Finally, it is explored the global reactivity descriptors and the temperature-dependent thermodynamic properties of the compound using the B3LYP/6–31 +G method.