Atmospheric microplastics emission from municipal solid waste incineration power plant: Field evidence and characterizations

IF 6.6 Q1 ENGINEERING, ENVIRONMENTAL
Ting Su , Huasheng Wang , Xiangyu Gu , Shuo Liu , Yusu Xiong , Shuang Deng , Songgeng Li
{"title":"Atmospheric microplastics emission from municipal solid waste incineration power plant: Field evidence and characterizations","authors":"Ting Su ,&nbsp;Huasheng Wang ,&nbsp;Xiangyu Gu ,&nbsp;Shuo Liu ,&nbsp;Yusu Xiong ,&nbsp;Shuang Deng ,&nbsp;Songgeng Li","doi":"10.1016/j.hazl.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics have been discovered in the solid residuals from municipal solid waste (MSW) incineration plant, posing potential risks to the surrounding environments. However, there exists a lack of evidence on the presence and characterizations of atmospheric microplastic emission from MSW incineration, which is considered more hazardous due to size reduction. Hence, we collected particles from flue gas emitted by a circulating fluidized bed incinerator, to investigate the morphology, chemical structure, and emission abundance of microplastics. Further, particles from different stream locations were collected to identify the effects of air pollution control devices on the microplastic abundance and chemical structures. Results indicate the predominant length of the microplastics in the flue gas ranged from 10 to 40 μm at different locations. The major polymer types of microplastics were polyvinyl chloride and polyacrylamide, resulting from inherent Cl elements and selective non-catalytic reduction in MSW, respectively. Based on the field data, the atmospheric microplastic emission was estimated at 2.1 × 10<sup>12</sup> pieces/yr, turned out to be a pivotal contributor to the atmospheric microplastics. Notably, the unique microplastic chemical properties pose a higher threat to human health than conventional plastics. Our work prioritizes an alternative source of microplastic emissions and calls for further research endeavors.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100149"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911025000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics have been discovered in the solid residuals from municipal solid waste (MSW) incineration plant, posing potential risks to the surrounding environments. However, there exists a lack of evidence on the presence and characterizations of atmospheric microplastic emission from MSW incineration, which is considered more hazardous due to size reduction. Hence, we collected particles from flue gas emitted by a circulating fluidized bed incinerator, to investigate the morphology, chemical structure, and emission abundance of microplastics. Further, particles from different stream locations were collected to identify the effects of air pollution control devices on the microplastic abundance and chemical structures. Results indicate the predominant length of the microplastics in the flue gas ranged from 10 to 40 μm at different locations. The major polymer types of microplastics were polyvinyl chloride and polyacrylamide, resulting from inherent Cl elements and selective non-catalytic reduction in MSW, respectively. Based on the field data, the atmospheric microplastic emission was estimated at 2.1 × 1012 pieces/yr, turned out to be a pivotal contributor to the atmospheric microplastics. Notably, the unique microplastic chemical properties pose a higher threat to human health than conventional plastics. Our work prioritizes an alternative source of microplastic emissions and calls for further research endeavors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信