Jennifer I. Villacres , Olivia Luong , Michael Shaikhet , Jonathan Ononiwu , Tyler J. Avis
{"title":"Membrane-targeting antimicrobial compounds have differential effects on living and artificial yeast membrane models","authors":"Jennifer I. Villacres , Olivia Luong , Michael Shaikhet , Jonathan Ononiwu , Tyler J. Avis","doi":"10.1016/j.bbrc.2025.151651","DOIUrl":null,"url":null,"abstract":"<div><div>The stability of the plasma membrane is crucial for cell viability and disruptions in membrane stability can significantly impact cell function. Antimicrobial compounds targeting fungal membranes are required as novel alternatives to current resistance-prone fungicides. Six antimicrobials were assessed using the yeast <em>Saccharomyces cerevisiae</em> in living and artificial membrane models to gain insight into their efficacy and mechanistic activity. Antimicrobial-treated yeast cultures were monitored for growth inhibition and cell membrane permeability. Liposomes prepared from yeast polar lipids were used to examine the impact of the antimicrobials on size, polydispersity, and ζ-potential. Iturin and nystatin were the most effective compounds in reducing growth and increasing membrane permeability. ζ-Potential measurements indicated that iturin caused reduced stability, whereas there were no changes in stability with nystatin. Daptomycin and fengycin did not affect growth or permeability, but reduced stability. Nisin inhibited growth but did not affect stability. Surfactin was the only tested compound to increase stability. Results indicate that antimicrobials known to target biomembranes had variable effects, with lipid membrane components playing a role in antifungal outcome and mechanistic activity.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"758 ","pages":"Article 151651"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25003651","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of the plasma membrane is crucial for cell viability and disruptions in membrane stability can significantly impact cell function. Antimicrobial compounds targeting fungal membranes are required as novel alternatives to current resistance-prone fungicides. Six antimicrobials were assessed using the yeast Saccharomyces cerevisiae in living and artificial membrane models to gain insight into their efficacy and mechanistic activity. Antimicrobial-treated yeast cultures were monitored for growth inhibition and cell membrane permeability. Liposomes prepared from yeast polar lipids were used to examine the impact of the antimicrobials on size, polydispersity, and ζ-potential. Iturin and nystatin were the most effective compounds in reducing growth and increasing membrane permeability. ζ-Potential measurements indicated that iturin caused reduced stability, whereas there were no changes in stability with nystatin. Daptomycin and fengycin did not affect growth or permeability, but reduced stability. Nisin inhibited growth but did not affect stability. Surfactin was the only tested compound to increase stability. Results indicate that antimicrobials known to target biomembranes had variable effects, with lipid membrane components playing a role in antifungal outcome and mechanistic activity.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics