{"title":"Identification of the binding site and immunoreactivity of anti-Aβ antibody 11A1: Comparison with the toxic conformation-specific TxCo-1 antibody","authors":"Rara Fukui , Uswah Hafizal , Yusuke Kageyama , Yumi Irie , Yuka Matsushima , Katsuma Hosoi , Takahisa Nakayama , Daita Kaneda , Yoshio Hashizume , Kunio Miki , Akiko Kita , Ken-ichi Mukaisho , Ryoji Kushima , Ikuo Tooyama , Kazuhiro Irie","doi":"10.1016/j.bbrc.2025.151655","DOIUrl":null,"url":null,"abstract":"<div><div>Since the advent of anti-amyloid β (Aβ) immunotherapy, exemplified by lecanemab, the development of effective therapeutic agents with minimal side effects has become an urgent priority. Over the past two decades, a number of antibodies have been developed that target toxic Aβ species. The 11A1 antibody is one such example, and is made from E22P-Aβ9–35, which is prone to adopt a toxic conformation with a turn at positions 22/23, as an antigen. This antibody is unique in that it stains not only extracellular but also intracellular Aβ in human AD brains. To identify its recognition domain, we performed X-ray crystallography of 11A1 in complex with E22P-Aβ10–34. We found that 11A1 is a novel N-terminal antibody that recognizes Tyr10–His14 of Aβ. Immunohistochemical studies showed that 11A1 stains senile plaques and vascular Aβ aggregates in brain samples of AD patients. On the other hand, 11A1 recognized Aβ aggregates in neurons, astrocytes, perivascular tissue, and microvesicles of non-AD patients, suggesting that 11A1 can detect a wide range of Aβ types regardless of AD pathology. In contrast, the recently developed TxCo-1 antibody, which specifically recognizes the toxic turn at positions 22/23 of Aβ42, stained only senile plaques and vascular Aβ aggregates from AD patients, but not Aβ species from non-AD patients. These results suggest that the toxic turn structure may be one of the key epitopes for achieving high affinity for pathological Aβ aggregates while minimizing nonspecific binding to aggregates unrelated to pathology.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"758 ","pages":"Article 151655"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25003699","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the advent of anti-amyloid β (Aβ) immunotherapy, exemplified by lecanemab, the development of effective therapeutic agents with minimal side effects has become an urgent priority. Over the past two decades, a number of antibodies have been developed that target toxic Aβ species. The 11A1 antibody is one such example, and is made from E22P-Aβ9–35, which is prone to adopt a toxic conformation with a turn at positions 22/23, as an antigen. This antibody is unique in that it stains not only extracellular but also intracellular Aβ in human AD brains. To identify its recognition domain, we performed X-ray crystallography of 11A1 in complex with E22P-Aβ10–34. We found that 11A1 is a novel N-terminal antibody that recognizes Tyr10–His14 of Aβ. Immunohistochemical studies showed that 11A1 stains senile plaques and vascular Aβ aggregates in brain samples of AD patients. On the other hand, 11A1 recognized Aβ aggregates in neurons, astrocytes, perivascular tissue, and microvesicles of non-AD patients, suggesting that 11A1 can detect a wide range of Aβ types regardless of AD pathology. In contrast, the recently developed TxCo-1 antibody, which specifically recognizes the toxic turn at positions 22/23 of Aβ42, stained only senile plaques and vascular Aβ aggregates from AD patients, but not Aβ species from non-AD patients. These results suggest that the toxic turn structure may be one of the key epitopes for achieving high affinity for pathological Aβ aggregates while minimizing nonspecific binding to aggregates unrelated to pathology.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics