Xiao Wang , Shuning Zhang , Ai Zhu , Lingyan Cao , Long Xu , Junjie Wang , Fei Zheng , Xiangkai Zhang , Hongyan Chen , Xinquan Jiang
{"title":"Black Phosphorus and E7-Functionalized Sulfonated Polyetheretherketone with Effective Osteogenicity and Antibacterial Activity","authors":"Xiao Wang , Shuning Zhang , Ai Zhu , Lingyan Cao , Long Xu , Junjie Wang , Fei Zheng , Xiangkai Zhang , Hongyan Chen , Xinquan Jiang","doi":"10.1016/j.eng.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><div>Given its excellent biological properties and the matching of its elastic modulus with that of human bone tissue, medical polyetheretherketone (PEEK) is considered a desirable candidate for bone-implant materials. However, its poor osseointegrative and antibacterial properties greatly limit its clinical application. To address these concerns, a functional PEEK implant is needed. Herein, a novel photo-responsive multifunctional PEEK-based implant material (sPEEK/BP/E7) with both effective osteogenesis and good disinfection properties was constructed via the self-assembly of black phosphorus (BP) nanosheets, mussel-inspired polydopamine (PDA), and bioactive short peptide E7 on sulfonated PEEK (sPEEK). The versatile micro-/nano-structured PEEK surface provides superior hydrophilicity, a favorable osteogenic microenvironment, and excellent photothermal effects under near-infrared (NIR) irradiation. The <em>in vitro</em> results showed that sPEEK/BP/E7 displays enhanced cytocompatibility and osteogenicity in terms of cell adhesion, proliferation, alkaline phosphatase (ALP) activity, matrix mineralization, and osteogenesis-related gene expression, superior to those of the sPEEK and sPEEK/BP samples. In addition to osteogenesis, the multifunctional coating exhibited strong antibacterial activity against both <em>Staphylococcus aureus</em> (<em>S. aureus</em>) and <em>Escherichia coli</em> (<em>E. coli</em>). Furthermore, it was confirmed in a rat femoral infection model that sPEEK/BP/E7 effectively resisted infection caused by <em>S. aureus</em> under NIR light irradiation and promoted osseointegration <em>in vivo</em>. Thus, this work presents a facile strategy to realize improvement of the “functional integration” of new polymer bone–implant materials and provide new ideas for their clinical application.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"46 ","pages":"Pages 147-161"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924004867","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given its excellent biological properties and the matching of its elastic modulus with that of human bone tissue, medical polyetheretherketone (PEEK) is considered a desirable candidate for bone-implant materials. However, its poor osseointegrative and antibacterial properties greatly limit its clinical application. To address these concerns, a functional PEEK implant is needed. Herein, a novel photo-responsive multifunctional PEEK-based implant material (sPEEK/BP/E7) with both effective osteogenesis and good disinfection properties was constructed via the self-assembly of black phosphorus (BP) nanosheets, mussel-inspired polydopamine (PDA), and bioactive short peptide E7 on sulfonated PEEK (sPEEK). The versatile micro-/nano-structured PEEK surface provides superior hydrophilicity, a favorable osteogenic microenvironment, and excellent photothermal effects under near-infrared (NIR) irradiation. The in vitro results showed that sPEEK/BP/E7 displays enhanced cytocompatibility and osteogenicity in terms of cell adhesion, proliferation, alkaline phosphatase (ALP) activity, matrix mineralization, and osteogenesis-related gene expression, superior to those of the sPEEK and sPEEK/BP samples. In addition to osteogenesis, the multifunctional coating exhibited strong antibacterial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, it was confirmed in a rat femoral infection model that sPEEK/BP/E7 effectively resisted infection caused by S. aureus under NIR light irradiation and promoted osseointegration in vivo. Thus, this work presents a facile strategy to realize improvement of the “functional integration” of new polymer bone–implant materials and provide new ideas for their clinical application.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.