Bounds for the trace norm of Aα matrix of digraphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Mushtaq A. Bhat, Peer Abdul Manan
{"title":"Bounds for the trace norm of Aα matrix of digraphs","authors":"Mushtaq A. Bhat,&nbsp;Peer Abdul Manan","doi":"10.1016/j.disc.2025.114491","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a digraph of order <em>n</em> with adjacency matrix <span><math><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. For <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix of <em>D</em> is defined as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, where <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo><mo>=</mo><mtext>diag</mtext><mspace></mspace><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span> is the diagonal matrix of vertex out degrees of <em>D</em>. Let <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> be the singular values of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. Then the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, which we call <em>α</em> trace norm of <em>D</em>, is defined as <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mo>⁎</mo></mrow></msub><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. In this paper, we find the singular values of some basic digraphs and characterize the digraphs <em>D</em> with <span><math><mtext>Rank</mtext><mspace></mspace><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. As an application of these results, we obtain a lower bound for the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix of digraphs and determine the extremal digraphs. In particular, we determine the oriented trees for which the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix attains minimum. We obtain a lower bound for the <em>α</em> spectral norm <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> of digraphs and characterize the extremal digraphs. As an application of this result, we obtain an upper bound for the <em>α</em> trace norm of digraphs and characterize the extremal digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114491"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be a digraph of order n with adjacency matrix A(D). For α[0,1), the Aα matrix of D is defined as Aα(D)=αΔ+(D)+(1α)A(D), where Δ+(D)=diag(d1+,d2+,,dn+) is the diagonal matrix of vertex out degrees of D. Let σ1α(D),σ2α(D),,σnα(D) be the singular values of Aα(D). Then the trace norm of Aα(D), which we call α trace norm of D, is defined as Aα(D)=i=1nσiα(D). In this paper, we find the singular values of some basic digraphs and characterize the digraphs D with Rank(Aα(D))=1. As an application of these results, we obtain a lower bound for the trace norm of Aα matrix of digraphs and determine the extremal digraphs. In particular, we determine the oriented trees for which the trace norm of Aα matrix attains minimum. We obtain a lower bound for the α spectral norm σ1α(D) of digraphs and characterize the extremal digraphs. As an application of this result, we obtain an upper bound for the α trace norm of digraphs and characterize the extremal digraphs.
有向图矩阵Aα的迹范数的界
设D为邻接矩阵a (D)的n阶有向图。对于α∈[0,1],D的Aα矩阵定义为Aα(D)=αΔ+(D)+(1−α)A(D),其中Δ+(D)=diag(d1+,d2+,…,dn+)是D顶点出度的对角矩阵。设σ1α(D),σ2α(D),…,σnα(D)为Aα(D)的奇异值。然后将Aα(D)的迹范数定义为‖Aα(D)‖=∑i=1nσiα(D)。本文给出了一些基本有向图的奇异值,并刻画了秩(Aα(D))=1的有向图D。作为这些结果的应用,我们得到了有向图的a α矩阵的迹范数的下界,并确定了有向图的极值。特别地,我们确定了Aα矩阵的迹范数达到最小的有向树。我们得到了有向图的α谱范数σ1α(D)的下界,并刻画了极值有向图。作为这一结果的应用,我们得到了有向图的α迹范数的上界,并刻画了极值有向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信