{"title":"Bounds for the trace norm of Aα matrix of digraphs","authors":"Mushtaq A. Bhat, Peer Abdul Manan","doi":"10.1016/j.disc.2025.114491","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a digraph of order <em>n</em> with adjacency matrix <span><math><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. For <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix of <em>D</em> is defined as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, where <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo><mo>=</mo><mtext>diag</mtext><mspace></mspace><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span> is the diagonal matrix of vertex out degrees of <em>D</em>. Let <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> be the singular values of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. Then the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, which we call <em>α</em> trace norm of <em>D</em>, is defined as <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mo>⁎</mo></mrow></msub><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. In this paper, we find the singular values of some basic digraphs and characterize the digraphs <em>D</em> with <span><math><mtext>Rank</mtext><mspace></mspace><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. As an application of these results, we obtain a lower bound for the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix of digraphs and determine the extremal digraphs. In particular, we determine the oriented trees for which the trace norm of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> matrix attains minimum. We obtain a lower bound for the <em>α</em> spectral norm <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mi>α</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> of digraphs and characterize the extremal digraphs. As an application of this result, we obtain an upper bound for the <em>α</em> trace norm of digraphs and characterize the extremal digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114491"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let D be a digraph of order n with adjacency matrix . For , the matrix of D is defined as , where is the diagonal matrix of vertex out degrees of D. Let be the singular values of . Then the trace norm of , which we call α trace norm of D, is defined as . In this paper, we find the singular values of some basic digraphs and characterize the digraphs D with . As an application of these results, we obtain a lower bound for the trace norm of matrix of digraphs and determine the extremal digraphs. In particular, we determine the oriented trees for which the trace norm of matrix attains minimum. We obtain a lower bound for the α spectral norm of digraphs and characterize the extremal digraphs. As an application of this result, we obtain an upper bound for the α trace norm of digraphs and characterize the extremal digraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.