Development of iron-based metal-organic frameworks for the efficient removal of industrial dye: Effect of ligands on morphological and adsorption parameters

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Nitin Kumar , Vanish Kumar , Vinod Kumar Garg
{"title":"Development of iron-based metal-organic frameworks for the efficient removal of industrial dye: Effect of ligands on morphological and adsorption parameters","authors":"Nitin Kumar ,&nbsp;Vanish Kumar ,&nbsp;Vinod Kumar Garg","doi":"10.1016/j.jssc.2025.125337","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the utilization of metal-organic frameworks (MOFs) enhanced the significance of the adsorptive removal of pollutants by several folds. To explore the unmatched potentials of MOFs, MIL-100 &amp; MIL-101 (iron-based MOFs) have been fabricated via a solvothermal process for Orange G dye removal (adsorption-based) from the aqueous system. The adsorption results show that MIL-100 has superior adsorption capacity (357.3 mg/g) in comparison to MIL-101 (206.9 mg/g) via pseudo-second-order kinetics. Moreover, both the adsorbents displayed their effectiveness for the removal of Orange G dye under extreme testing conditions (e.g., varying pH and high salt strength). The interactions between the target dye with the adsorbents have been inferred using three different adsorption isotherm models. Fascinatingly, as per isotherm models, significantly higher q<sub>max</sub> values of 540.5 and 321.5 mg/g were achieved using MIL-100 and MIL-101, respectively. The current study revealed that the ligand type is crucial in deciding the MOF properties and their adsorption capacities.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"347 ","pages":"Article 125337"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001604","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the utilization of metal-organic frameworks (MOFs) enhanced the significance of the adsorptive removal of pollutants by several folds. To explore the unmatched potentials of MOFs, MIL-100 & MIL-101 (iron-based MOFs) have been fabricated via a solvothermal process for Orange G dye removal (adsorption-based) from the aqueous system. The adsorption results show that MIL-100 has superior adsorption capacity (357.3 mg/g) in comparison to MIL-101 (206.9 mg/g) via pseudo-second-order kinetics. Moreover, both the adsorbents displayed their effectiveness for the removal of Orange G dye under extreme testing conditions (e.g., varying pH and high salt strength). The interactions between the target dye with the adsorbents have been inferred using three different adsorption isotherm models. Fascinatingly, as per isotherm models, significantly higher qmax values of 540.5 and 321.5 mg/g were achieved using MIL-100 and MIL-101, respectively. The current study revealed that the ligand type is crucial in deciding the MOF properties and their adsorption capacities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信