Cheng Wen , Yan Zhang , Changxin Wang , Haiyou Huang , Yuan Wu , Turab Lookman , Yanjing Su
{"title":"Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility","authors":"Cheng Wen , Yan Zhang , Changxin Wang , Haiyou Huang , Yuan Wu , Turab Lookman , Yanjing Su","doi":"10.1016/j.eng.2023.11.026","DOIUrl":null,"url":null,"abstract":"<div><div>Designing refractory high-entropy alloys (RHEAs) for high-temperature (HT) applications is an outstanding challenge given the vast possible composition space, which contains billions of candidates, and the need to optimize across multiple objectives. Here, we present an approach that accelerates the discovery of RHEA compositions with superior strength and ductility by integrating machine learning (ML), genetic search, cluster analysis, and experimental design. We iteratively synthesize and characterize 24 predicted compositions after six feedback loops. Four compositions show outstanding combinations of HT yield strength and room-temperature (RT) ductility spanning the ranges of 714–1061 MPa and 17.2%–50.0% fracture strain, respectively. We identify an attractive alloy system, ZrNbMoHfTa, particularly the composition Zr<sub>0.13</sub>Nb<sub>0.27</sub>Mo<sub>0.26</sub>Hf<sub>0.13</sub>Ta<sub>0.21</sub>, which demonstrates a yield approaching 940 MPa at 1200 °C and favorable RT ductility with 17.2% fracture strain. The high yield strength at 1200 °C exceeds that reported for RHEAs, with 1200 °C exceeding the service temperature limit for nickel (Ni)-based superalloys. Our ML-based approach makes it possible to rapidly optimize multiple properties for materials design, thus overcoming the common problems of limited data and a vast composition space in complex materials systems while satisfying multiple objectives.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"46 ","pages":"Pages 214-223"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing refractory high-entropy alloys (RHEAs) for high-temperature (HT) applications is an outstanding challenge given the vast possible composition space, which contains billions of candidates, and the need to optimize across multiple objectives. Here, we present an approach that accelerates the discovery of RHEA compositions with superior strength and ductility by integrating machine learning (ML), genetic search, cluster analysis, and experimental design. We iteratively synthesize and characterize 24 predicted compositions after six feedback loops. Four compositions show outstanding combinations of HT yield strength and room-temperature (RT) ductility spanning the ranges of 714–1061 MPa and 17.2%–50.0% fracture strain, respectively. We identify an attractive alloy system, ZrNbMoHfTa, particularly the composition Zr0.13Nb0.27Mo0.26Hf0.13Ta0.21, which demonstrates a yield approaching 940 MPa at 1200 °C and favorable RT ductility with 17.2% fracture strain. The high yield strength at 1200 °C exceeds that reported for RHEAs, with 1200 °C exceeding the service temperature limit for nickel (Ni)-based superalloys. Our ML-based approach makes it possible to rapidly optimize multiple properties for materials design, thus overcoming the common problems of limited data and a vast composition space in complex materials systems while satisfying multiple objectives.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.