Intelligent Photonics: A Disruptive Technology to Shape the Present and Redefine the Future

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Danlin Xu, Yuchen Ma, Guofan Jin, Liangcai Cao
{"title":"Intelligent Photonics: A Disruptive Technology to Shape the Present and Redefine the Future","authors":"Danlin Xu,&nbsp;Yuchen Ma,&nbsp;Guofan Jin,&nbsp;Liangcai Cao","doi":"10.1016/j.eng.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) has taken breathtaking leaps forward in recent years, evolving into a strategic technology for pioneering the future. The growing demand for computing power—especially in demanding inference tasks, exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems. Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality. Through the profound fusion of AI and photonics technologies, intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications. Deep learning, as a subset of AI, presents efficient avenues for optimizing photonic design, developing intelligent optical systems, and performing optical data processing and analysis. Employing AI in photonics can empower applications such as smartphone cameras, biomedical microscopy, and virtual and augmented reality displays. Conversely, leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption. Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields, including optical communications, automatic driving, and astronomical observation. Here, recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics, holography, and quantum photonics. This review also spotlights relevant applications and offers insights into challenges and prospects.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"46 ","pages":"Pages 186-213"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005149","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has taken breathtaking leaps forward in recent years, evolving into a strategic technology for pioneering the future. The growing demand for computing power—especially in demanding inference tasks, exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems. Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality. Through the profound fusion of AI and photonics technologies, intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications. Deep learning, as a subset of AI, presents efficient avenues for optimizing photonic design, developing intelligent optical systems, and performing optical data processing and analysis. Employing AI in photonics can empower applications such as smartphone cameras, biomedical microscopy, and virtual and augmented reality displays. Conversely, leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption. Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields, including optical communications, automatic driving, and astronomical observation. Here, recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics, holography, and quantum photonics. This review also spotlights relevant applications and offers insights into challenges and prospects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信