Design and efficiency improvement of eco-conscious Sr3PBr3 and Sr3NCl3 double perovskite solar cells with IGZO and Cu2O as ETL and HTL

IF 8 Q1 ENERGY & FUELS
Md.Shamim Reza , Avijit Ghosh , Md.Selim Reza , Shafaiet Newaz Wornob , Sabina Sultana
{"title":"Design and efficiency improvement of eco-conscious Sr3PBr3 and Sr3NCl3 double perovskite solar cells with IGZO and Cu2O as ETL and HTL","authors":"Md.Shamim Reza ,&nbsp;Avijit Ghosh ,&nbsp;Md.Selim Reza ,&nbsp;Shafaiet Newaz Wornob ,&nbsp;Sabina Sultana","doi":"10.1016/j.nexus.2025.100417","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a new design for double perovskite solar cells (DPSCs) utilizing Sr<sub>3</sub>PBr<sub>3</sub> and Sr<sub>3</sub>NCl<sub>3</sub>, which is noted for its enhanced stability in comparison to conventional single perovskite materials, thereby making it ideal for the development of ultra-thin, very efficient solar cells. The proposed architecture features a distinctive arrangement: Al/FTO/IGZO/Sr<sub>3</sub>PBr<sub>3</sub>/Sr<sub>3</sub>NCl<sub>3</sub>/Cu<sub>2</sub>O/Au. The study provides an in-depth theoretical examination of the energy band structure, defect properties, and quantum efficiency of the DPSC, focusing on the optimized photovoltaic (PV) specifications. Remarkably, the optimized DPSC achieves a power conversion efficiency (PCE), an open-circuit voltage (<em>V<sub>OC</sub></em>), a short-circuit current density (<em>J<sub>SC</sub></em>), and a fill factor (FF) of 32.46 %, 1.40 V, 26.51 mA/cm<sup>2</sup>, 87.26 %. Whereas without HTL, the PV parameters are PCE of 30.34 %, <em>V<sub>OC</sub></em> of 1.27 V, <em>J<sub>SC</sub></em> of 26.45 mA/cm<sup>2</sup>, and FF of 90.14 %. The impressive efficiency of 32.46 % is due to better charge extraction, improved alignment between the absorber and transport layers, and reduced losses from recombination. The double perovskite absorber's special characteristics, along with accurate doping and defect technology, allow for effective charge transfer and collection. Additionally, the research explores the influence of various factors such as temperature, interface defects, rates of carrier production and recombination, and the work functions of return contact materials on performance. The results underscore the significant potential of Sr<sub>3</sub>PBr<sub>3</sub> and Sr<sub>3</sub>NCl<sub>3</sub>, especially when combined with the Cu<sub>2</sub>O HTL, in effectively reducing sheet resistance and enhancing overall solar cell efficiency. Validation of the design was performed using SCAPS-1D simulation software.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"18 ","pages":"Article 100417"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a new design for double perovskite solar cells (DPSCs) utilizing Sr3PBr3 and Sr3NCl3, which is noted for its enhanced stability in comparison to conventional single perovskite materials, thereby making it ideal for the development of ultra-thin, very efficient solar cells. The proposed architecture features a distinctive arrangement: Al/FTO/IGZO/Sr3PBr3/Sr3NCl3/Cu2O/Au. The study provides an in-depth theoretical examination of the energy band structure, defect properties, and quantum efficiency of the DPSC, focusing on the optimized photovoltaic (PV) specifications. Remarkably, the optimized DPSC achieves a power conversion efficiency (PCE), an open-circuit voltage (VOC), a short-circuit current density (JSC), and a fill factor (FF) of 32.46 %, 1.40 V, 26.51 mA/cm2, 87.26 %. Whereas without HTL, the PV parameters are PCE of 30.34 %, VOC of 1.27 V, JSC of 26.45 mA/cm2, and FF of 90.14 %. The impressive efficiency of 32.46 % is due to better charge extraction, improved alignment between the absorber and transport layers, and reduced losses from recombination. The double perovskite absorber's special characteristics, along with accurate doping and defect technology, allow for effective charge transfer and collection. Additionally, the research explores the influence of various factors such as temperature, interface defects, rates of carrier production and recombination, and the work functions of return contact materials on performance. The results underscore the significant potential of Sr3PBr3 and Sr3NCl3, especially when combined with the Cu2O HTL, in effectively reducing sheet resistance and enhancing overall solar cell efficiency. Validation of the design was performed using SCAPS-1D simulation software.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信