Flexural behaviour of bamboo-reinforced concrete beams soaked in salt solution and molasse treatments and wrapped in fibreglass tape: An experimental and numerical study
Erno Widayanto , Ketut A. Wiswamitra, Bagas R. Subchan
{"title":"Flexural behaviour of bamboo-reinforced concrete beams soaked in salt solution and molasse treatments and wrapped in fibreglass tape: An experimental and numerical study","authors":"Erno Widayanto , Ketut A. Wiswamitra, Bagas R. Subchan","doi":"10.1016/j.bamboo.2025.100147","DOIUrl":null,"url":null,"abstract":"<div><div>Reinforced concrete is a structural component commonly used in construction projects. Steel is used in reinforced concrete to increase tensile strength and maintain tension. However, there are concerns about steel due to the high demand for it, and because of its high carbon footprint. Consequently, the need to replace steel with renewable resources has become an urgent research topic. Bamboo, a renewable material with environmentally beneficial properties and low cost characteristics, is emerging as a viable alternative to steel. Several bamboo processing methods have been proposed to improve the mechanical properties of bamboo, including its tensile strength and adhesion to concrete. In this study, natural resources and biological waste were used for processing, specifically soaking in salt water or a mixture of salt water and molasses to increase tensile strength. To strengthen the bamboo-concrete bond, the reinforcement was wrapped in fibreglass tape. Finally, we compared the strength of bamboo and steel in concrete beams. Four-point bending tests were used to evaluate the displacement and load-bearing capacity. The use of bamboo as an alternative to steel should be considered as a form of rebar reinforcement for concrete and should be further investigated. Experimental tests indicated that bamboo-reinforced concrete (BRC) could withstand loads of 12–14.5 tonnes, while steel-reinforced concrete (SRC) could withstand loads of 14–15 tonnes. All experiments showed that bamboo could be used in place of steel as reinforcement, as its load-bearing capacity was almost the same. However, bamboo was much more brittle than steel in its ductile state.</div></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"11 ","pages":"Article 100147"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139125000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforced concrete is a structural component commonly used in construction projects. Steel is used in reinforced concrete to increase tensile strength and maintain tension. However, there are concerns about steel due to the high demand for it, and because of its high carbon footprint. Consequently, the need to replace steel with renewable resources has become an urgent research topic. Bamboo, a renewable material with environmentally beneficial properties and low cost characteristics, is emerging as a viable alternative to steel. Several bamboo processing methods have been proposed to improve the mechanical properties of bamboo, including its tensile strength and adhesion to concrete. In this study, natural resources and biological waste were used for processing, specifically soaking in salt water or a mixture of salt water and molasses to increase tensile strength. To strengthen the bamboo-concrete bond, the reinforcement was wrapped in fibreglass tape. Finally, we compared the strength of bamboo and steel in concrete beams. Four-point bending tests were used to evaluate the displacement and load-bearing capacity. The use of bamboo as an alternative to steel should be considered as a form of rebar reinforcement for concrete and should be further investigated. Experimental tests indicated that bamboo-reinforced concrete (BRC) could withstand loads of 12–14.5 tonnes, while steel-reinforced concrete (SRC) could withstand loads of 14–15 tonnes. All experiments showed that bamboo could be used in place of steel as reinforcement, as its load-bearing capacity was almost the same. However, bamboo was much more brittle than steel in its ductile state.