{"title":"An extension of Petek-Šemrl preserver theorems for Jordan embeddings of structural matrix algebras","authors":"Ilja Gogić, Mateo Tomašević","doi":"10.1016/j.jmaa.2025.129497","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the corresponding upper-triangular subalgebra. In their influential work, Petek and Šemrl characterize Jordan automorphisms of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, as (injective in the case of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) continuous commutativity and spectrum preserving maps <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Recently, in a joint work with Petek, the authors extended this characterization to the maps <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>A</mi></math></span> is an arbitrary subalgebra of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contains <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, any such map <em>ϕ</em> is a Jordan embedding and hence of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper we further extend the aforementioned results in the context of structural matrix algebras (SMAs), i.e. subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contain all diagonal matrices. More precisely, we provide both a necessary and sufficient condition for an SMA <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that any injective continuous commutativity and spectrum preserving map <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is necessarily a Jordan embedding. In contrast to the previous cases, such maps <em>ϕ</em> no longer need to be multiplicative/antimultiplicative, nor rank-one preservers.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129497"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the algebra of complex matrices and the corresponding upper-triangular subalgebra. In their influential work, Petek and Šemrl characterize Jordan automorphisms of and , when , as (injective in the case of ) continuous commutativity and spectrum preserving maps and . Recently, in a joint work with Petek, the authors extended this characterization to the maps , where is an arbitrary subalgebra of that contains . In particular, any such map ϕ is a Jordan embedding and hence of the form or , for some invertible matrix .
In this paper we further extend the aforementioned results in the context of structural matrix algebras (SMAs), i.e. subalgebras of that contain all diagonal matrices. More precisely, we provide both a necessary and sufficient condition for an SMA such that any injective continuous commutativity and spectrum preserving map is necessarily a Jordan embedding. In contrast to the previous cases, such maps ϕ no longer need to be multiplicative/antimultiplicative, nor rank-one preservers.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.