{"title":"The Cartesian product of shrinking target sets in dyadic system and triadic system","authors":"Wanjin Cheng","doi":"10.1016/j.jmaa.2025.129495","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Cartesian product of shrinking target sets. Let <em>f</em> and <em>g</em> be two positive continuous functions. For any <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, we define the shrinking target sets as follows:<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>:</mo><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>x</mi><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><mo><</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mtext> for infinitely many </mtext><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>y</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>:</mo><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mi>y</mi><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><mo><</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub><mi>g</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></msup><mtext> for infinitely many </mtext><mi>m</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mi>f</mi><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>j</mi></mrow></msubsup><mi>x</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub><mi>g</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mi>g</mi><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>j</mi></mrow></msubsup><mi>y</mi><mo>)</mo></math></span> denote the Birkhoff ergodic sums, and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mi>x</mi><mo>=</mo><mi>b</mi><mi>x</mi><mspace></mspace><mo>(</mo><mtext>mod </mtext><mn>1</mn><mo>)</mo></math></span>.</div><div>The Hausdorff dimension of the Cartesian product set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is determined in this work.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129495"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002768","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the Cartesian product of shrinking target sets. Let f and g be two positive continuous functions. For any , we define the shrinking target sets as follows: and where and denote the Birkhoff ergodic sums, and .
The Hausdorff dimension of the Cartesian product set is determined in this work.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.