Generalized (co)homology of symmetric quandles over homogeneous Beck modules

IF 0.7 2区 数学 Q2 MATHEMATICS
Biswadeep Karmakar, Deepanshi Saraf, Mahender Singh
{"title":"Generalized (co)homology of symmetric quandles over homogeneous Beck modules","authors":"Biswadeep Karmakar,&nbsp;Deepanshi Saraf,&nbsp;Mahender Singh","doi":"10.1016/j.jpaa.2025.107956","DOIUrl":null,"url":null,"abstract":"<div><div>A quandle equipped with a good involution is referred to as symmetric. It is known that the cohomology of symmetric quandles gives rise to strong cocycle invariants for classical and surface links, even when they are not necessarily oriented. In this paper, we introduce the category of symmetric quandle modules and prove that these modules completely determine the Beck modules in the category of symmetric quandles. Consequently, this establishes suitable coefficient objects for constructing appropriate (co)homology theories. We develop an extension theory of modules over symmetric quandles, and propose a generalized (co)homology theory for symmetric quandles with coefficients in a homogeneous Beck module, which also recovers the symmetric quandle (co)homology developed by Kamada and Oshiro (2010) <span><span>[16]</span></span>. Our constructions also apply to symmetric racks. We conclude by establishing an explicit isomorphism between the second cohomology of a symmetric quandle and the first cohomology of its associated group.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107956"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000957","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A quandle equipped with a good involution is referred to as symmetric. It is known that the cohomology of symmetric quandles gives rise to strong cocycle invariants for classical and surface links, even when they are not necessarily oriented. In this paper, we introduce the category of symmetric quandle modules and prove that these modules completely determine the Beck modules in the category of symmetric quandles. Consequently, this establishes suitable coefficient objects for constructing appropriate (co)homology theories. We develop an extension theory of modules over symmetric quandles, and propose a generalized (co)homology theory for symmetric quandles with coefficients in a homogeneous Beck module, which also recovers the symmetric quandle (co)homology developed by Kamada and Oshiro (2010) [16]. Our constructions also apply to symmetric racks. We conclude by establishing an explicit isomorphism between the second cohomology of a symmetric quandle and the first cohomology of its associated group.
齐次Beck模上对称堆的广义(co)同调
具有良好对合度的纠缠称为对称的。众所周知,对称四角环的上同调产生了经典和曲面连杆的强环不变量,即使它们不一定是定向的。本文引入了对称堆模的范畴,并证明了这些模完全决定了对称堆模范畴中的Beck模。从而为构造合适的(co)同调理论建立了合适的系数对象。在此基础上,我们提出了对称quandle上的模的扩展理论,并给出了齐次Beck模中带系数的对称quandle的广义(co)同调理论,恢复了Kamada和Oshiro(2010)[16]的对称quandle (co)同调理论。我们的构造也适用于对称机架。我们通过建立对称堆的第二上同构与其伴生群的第一上同构之间的显同构而得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信