Mechanisms of pore defects evolution in Mo14Re alloy welded joints under dislocation back stress

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianjun Wang , Junzhou Yang , Shichen Wang , Qiang Wang , Li Wang , Hairui Xing , Yanchao Li , Wen Zhang , Muhammad Muzamil , Ping Hu
{"title":"Mechanisms of pore defects evolution in Mo14Re alloy welded joints under dislocation back stress","authors":"Xianjun Wang ,&nbsp;Junzhou Yang ,&nbsp;Shichen Wang ,&nbsp;Qiang Wang ,&nbsp;Li Wang ,&nbsp;Hairui Xing ,&nbsp;Yanchao Li ,&nbsp;Wen Zhang ,&nbsp;Muhammad Muzamil ,&nbsp;Ping Hu","doi":"10.1016/j.ijrmhm.2025.107155","DOIUrl":null,"url":null,"abstract":"<div><div>Mo<img>14Re alloy is widely utilized in aerospace and nuclear energy applications due to its exceptional high-temperature mechanical properties and radiation resistance. Despite its significant high-temperature stability, the presence of pore defects seriously damages the mechanical properties of the alloy. This study combines crystal plasticity finite element simulation to reveal the influence mechanism of dislocation back stress on pore defects in Mo<img>14Re alloy welded joints. In the fusion zone (FZ), the formation of pore defects is primarily influenced by differences in Schmid factors, stress concentration, and dislocation motion. Grains with high Schmid factors are more prone to dislocation movement and significant deformation, while grains with low Schmid factors exhibit weaker deformability, leading to stress concentration at grain boundaries and suppressing dislocation motion around pores. This exacerbates local deformation inhomogeneity and promotes pore formation. In the weld zone (WZ), the formation of pore defects is closely related to stress concentration and dislocation motion. Stress concentration typically occurs at grain boundaries, triggering the generation and propagation of dislocations. This often results in uneven plastic deformation, leading to insufficient deformation in certain areas and the formation of pore defects. In the FZ, lower energy input restricts dislocation motion at subgrain boundaries, leading to stress concentration and back stress accumulation, which promotes pore defect formation. In contrast, the higher energy in the WZ increases dislocation strain energy, enabling dislocations to overcome subgrain boundaries more easily.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107155"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001209","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mo14Re alloy is widely utilized in aerospace and nuclear energy applications due to its exceptional high-temperature mechanical properties and radiation resistance. Despite its significant high-temperature stability, the presence of pore defects seriously damages the mechanical properties of the alloy. This study combines crystal plasticity finite element simulation to reveal the influence mechanism of dislocation back stress on pore defects in Mo14Re alloy welded joints. In the fusion zone (FZ), the formation of pore defects is primarily influenced by differences in Schmid factors, stress concentration, and dislocation motion. Grains with high Schmid factors are more prone to dislocation movement and significant deformation, while grains with low Schmid factors exhibit weaker deformability, leading to stress concentration at grain boundaries and suppressing dislocation motion around pores. This exacerbates local deformation inhomogeneity and promotes pore formation. In the weld zone (WZ), the formation of pore defects is closely related to stress concentration and dislocation motion. Stress concentration typically occurs at grain boundaries, triggering the generation and propagation of dislocations. This often results in uneven plastic deformation, leading to insufficient deformation in certain areas and the formation of pore defects. In the FZ, lower energy input restricts dislocation motion at subgrain boundaries, leading to stress concentration and back stress accumulation, which promotes pore defect formation. In contrast, the higher energy in the WZ increases dislocation strain energy, enabling dislocations to overcome subgrain boundaries more easily.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信