Surface characterization of copper metal matrix composites reinforced with tungsten and molybdenum (Cu-W-Mo) through Microwave hybrid heating: A sustainable approach
IF 4.2 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Surface characterization of copper metal matrix composites reinforced with tungsten and molybdenum (Cu-W-Mo) through Microwave hybrid heating: A sustainable approach","authors":"Khalid Bashir, Dheeraj Gupta, Vivek Jain","doi":"10.1016/j.ijrmhm.2025.107147","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the innovative application of microwave hybrid heating (MHH) as a cost-effective and efficient method for fabricating advanced copper (Cu) powder-based metal matrix composites (MMCs). These composites are reinforced with tungsten (W) and molybdenum (Mo) powders at varying weight fractions (5 %, 10 %, and 15 %). The novelty of this research lies in the use of MHH, which combines microwave and conventional heating to achieve uniform, rapid processing, significantly reducing melting times and enhancing material properties. Using a microwave frequency of 2.45 GHz and a power setting of 900 W, pure Cu was successfully cast in just 7 min, while the reinforced composites melted even faster, within 4 min. Phase analysis was conducted using X-ray diffraction (XRD), which revealed the formation of Cu<sub>64</sub>O phases due to the process taking in the atmospheric environment. Microstructural studies further highlighted the presence of equiaxed grains and uniform dispersion of the W and Mo reinforcement particles throughout the Cu matrix. Increasing W and Mo content in Cu enhances the tensile strength and resistivity of the composite material. The MMC containing 15 % W and 15 % Mo achieved a Vickers microhardness value of 302.78 ± 15.13 HV which is 5.09 times higher than that of pure Cu. The composites exhibited excellent physical properties, including minimal porosity (less than 1.5 %). The Cu + 15 %W + 15 %Mo composite achieved an impressive relative density of 98.56 %, indicating excellent compaction and low defect levels. Moreover tensile strength of Cu + 15 %W + 15 %Mo was found 301 ± 15.05 MPa which was 1.65 times higher than that of pure Cu.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107147"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026343682500112X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the innovative application of microwave hybrid heating (MHH) as a cost-effective and efficient method for fabricating advanced copper (Cu) powder-based metal matrix composites (MMCs). These composites are reinforced with tungsten (W) and molybdenum (Mo) powders at varying weight fractions (5 %, 10 %, and 15 %). The novelty of this research lies in the use of MHH, which combines microwave and conventional heating to achieve uniform, rapid processing, significantly reducing melting times and enhancing material properties. Using a microwave frequency of 2.45 GHz and a power setting of 900 W, pure Cu was successfully cast in just 7 min, while the reinforced composites melted even faster, within 4 min. Phase analysis was conducted using X-ray diffraction (XRD), which revealed the formation of Cu64O phases due to the process taking in the atmospheric environment. Microstructural studies further highlighted the presence of equiaxed grains and uniform dispersion of the W and Mo reinforcement particles throughout the Cu matrix. Increasing W and Mo content in Cu enhances the tensile strength and resistivity of the composite material. The MMC containing 15 % W and 15 % Mo achieved a Vickers microhardness value of 302.78 ± 15.13 HV which is 5.09 times higher than that of pure Cu. The composites exhibited excellent physical properties, including minimal porosity (less than 1.5 %). The Cu + 15 %W + 15 %Mo composite achieved an impressive relative density of 98.56 %, indicating excellent compaction and low defect levels. Moreover tensile strength of Cu + 15 %W + 15 %Mo was found 301 ± 15.05 MPa which was 1.65 times higher than that of pure Cu.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.