Exploring structural, optical, dielectric and electrical attributes of a La based complex perovskite

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Lipsa Priyadarshini , L. Biswal , Sujata Rout , Karubaki Moharana , Amit Kumar Parida , R.N.P. Choudhary , Santosh Kumar Satpathy
{"title":"Exploring structural, optical, dielectric and electrical attributes of a La based complex perovskite","authors":"Lipsa Priyadarshini ,&nbsp;L. Biswal ,&nbsp;Sujata Rout ,&nbsp;Karubaki Moharana ,&nbsp;Amit Kumar Parida ,&nbsp;R.N.P. Choudhary ,&nbsp;Santosh Kumar Satpathy","doi":"10.1016/j.ssi.2025.116840","DOIUrl":null,"url":null,"abstract":"<div><div>A rare-earth based novel compound with a disordered perovskite structure has been synthesised using the conventional solid-state reaction approach. The structural phase of the compound is analysed using room temperature X-ray diffraction (XRD) data. The refinement of XRD data suggested formation of compound in trigonal phase with R-3c symmetry. Position of peaks in Raman spectra obtained at room temperature further support the proposition of above structure and symmetry of formation. Using scanning electron microscope (SEM) images, the microstructure of the compound and the surface morphology is revealed. EDX analysis presented semi-quantitative information on distribution and weight percentage of elements present, from which the synthesis of the expected compound is substantiated. Examination of optical characteristics via UV–Visible absorption spectroscopy revealed a band gap of 3.2 eV suggesting possible potential applications in optoelectronic and photovoltaic devices. The electric polarisation and relaxation phenomena prevailing in the material as a function of frequency and temperature are extensively studied using data acquired via complex impedance spectroscopy (CIS) technique. A temperature and frequency stable dielectric response in high frequency region recommends use of compound for application at high frequency and temperature. Dominating bulk contribution to overall electrical response and negative temperature coefficient of resistance (NTCR) behaviour is observed. The frequency-dependent ac conductivity data adheres to Jonscher's power law. To estimate the activation energy, which facilitates the identification of the specific charges involved in the ac conduction process, the temperature-dependant ac conductivity data is utilised.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116840"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000591","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A rare-earth based novel compound with a disordered perovskite structure has been synthesised using the conventional solid-state reaction approach. The structural phase of the compound is analysed using room temperature X-ray diffraction (XRD) data. The refinement of XRD data suggested formation of compound in trigonal phase with R-3c symmetry. Position of peaks in Raman spectra obtained at room temperature further support the proposition of above structure and symmetry of formation. Using scanning electron microscope (SEM) images, the microstructure of the compound and the surface morphology is revealed. EDX analysis presented semi-quantitative information on distribution and weight percentage of elements present, from which the synthesis of the expected compound is substantiated. Examination of optical characteristics via UV–Visible absorption spectroscopy revealed a band gap of 3.2 eV suggesting possible potential applications in optoelectronic and photovoltaic devices. The electric polarisation and relaxation phenomena prevailing in the material as a function of frequency and temperature are extensively studied using data acquired via complex impedance spectroscopy (CIS) technique. A temperature and frequency stable dielectric response in high frequency region recommends use of compound for application at high frequency and temperature. Dominating bulk contribution to overall electrical response and negative temperature coefficient of resistance (NTCR) behaviour is observed. The frequency-dependent ac conductivity data adheres to Jonscher's power law. To estimate the activation energy, which facilitates the identification of the specific charges involved in the ac conduction process, the temperature-dependant ac conductivity data is utilised.

Abstract Image

探索La基复合钙钛矿的结构、光学、介电和电学性质
采用传统的固相反应方法合成了一种具有无序钙钛矿结构的稀土基新型化合物。利用室温x射线衍射(XRD)数据分析了化合物的结构相。XRD数据的细化表明化合物形成为三角形相,具有R-3c对称性。在室温下得到的拉曼光谱峰的位置进一步支持了上述结构和形成对称性的命题。利用扫描电子显微镜(SEM)图像,揭示了化合物的微观结构和表面形貌。EDX分析提供了有关存在元素的分布和重量百分比的半定量信息,由此证实了预期化合物的合成。通过紫外-可见吸收光谱检测其光学特性,发现带隙为3.2 eV,这表明其在光电和光伏器件中的潜在应用。利用复杂阻抗谱(CIS)技术获得的数据,广泛研究了材料中作为频率和温度函数的电极化和弛豫现象。在高频区域的温度和频率稳定的介电响应建议使用该化合物在高频和温度下的应用。观察到总体电响应和负电阻温度系数(NTCR)行为的主导体积贡献。频率相关的交流电导率数据符合琼舍尔幂定律。为了估计活化能,这有助于识别交流传导过程中涉及的特定电荷,使用了与温度相关的交流电导率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信